D:\Users\ASUS\PycharmProjects\Megacities\Scripts\python.exe "D:\Users\ASUS\PycharmProjects\ML paper prediction\分类模型.py"
Starting Multi-Year Analysis
Loading data: D:\JW\BaiduSyncdisk\数据\SZML\rasters\merged_t2.csv
Shape after cleaning: (1048575, 31), dropped cols: 0, rows: 0
Columns loaded:
['id', '2022_ap', '2022_ cod', '2022_ do', '2022_ ioa', '2022_mp', '2022_ oil', '2022_ ph', '2022_ tn', '2022_ tp', '2023_ap', '2023_cod', '2023_do', '2023_ioa', '2023_mp', '2023_oil', '2023_ph', '2023_tn', '2023_tp', '2024_ ap', '2024_ cod', '2024_ do', '2024_ ioa', '2024_mp', '2024_ oil', '2024_ ph', '2024_ tn', '2024_ tp', '2022_influx', '2023_influx', '2024_influx']
Columns with NaN values:
id 467424
2022_ap 467425
2022_ cod 467425
2022_ do 467425
2022_ ioa 467425
2022_mp 1708
2022_ oil 467425
2022_ ph 467425
2022_ tn 467425
2022_ tp 467424
2023_ap 467424
2023_cod 467424
2023_do 467424
2023_ioa 467424
2023_mp 467425
2023_oil 467424
2023_ph 467424
2023_tn 467424
2023_tp 467424
2024_ ap 467424
2024_ cod 467424
2024_ do 467424
2024_ ioa 467424
2024_mp 467425
2024_ oil 467424
2024_ ph 467424
2024_ tn 467424
2024_ tp 467424
dtype: int64
Detected years: [2022, 2023, 2024]
Target column 'MP' exists: True
Found target column for year 2022: 2022_mp
Year 2022: columns -> ['ap', ' cod', ' do', ' ioa', ' oil', ' ph', ' tn', ' tp', 'influx', 'mp', 'year']
Found target column for year 2023: 2023_mp
Year 2023: columns -> ['ap', 'cod', 'do', 'ioa', 'oil', 'ph', 'tn', 'tp', 'influx', 'mp', 'year']
Found target column for year 2024: 2024_mp
Year 2024: columns -> [' ap', ' cod', ' do', ' ioa', ' oil', ' ph', ' tn', ' tp', 'influx', 'mp', 'year']
Datasets summary:
Year 2022: shape=(1048575, 11), columns=['ap', ' cod', ' do', ' ioa', ' oil', ' ph', ' tn', ' tp', 'influx', 'mp', 'year']
Year 2023: shape=(1048575, 11), columns=['ap', 'cod', 'do', 'ioa', 'oil', 'ph', 'tn', 'tp', 'influx', 'mp', 'year']
Year 2024: shape=(1048575, 11), columns=[' ap', ' cod', ' do', ' ioa', ' oil', ' ph', ' tn', ' tp', 'influx', 'mp', 'year']
--- Year 2022 ---
Breaks: [0.00827264 0.1964626 0.2110861 0.22242553 0.23456236 1.02878308]
Distribution:
mp
0 209374
1 209373
2 209373
3 209373
4 209374
Name: count, dtype: int64
Year 2022 - Time: 12.0s, Accuracy: 0.6856
Saved: RF_results\figure_2022.png
Traceback (most recent call last):
File "D:\Users\ASUS\PycharmProjects\ML paper prediction\分类模型.py", line 311, in <module>
main()
File "D:\Users\ASUS\PycharmProjects\ML paper prediction\分类模型.py", line 272, in main
create_result_figure(model, Xt, yt, yp, feats, y)
File "D:\Users\ASUS\PycharmProjects\ML paper prediction\分类模型.py", line 206, in create_result_figure
aggregated_shap[:, j] = np.mean(shap_values_2d[:, indices], axis=1)
~~~~~~~~~~~~~~~^^^^^^
ValueError: could not broadcast input array from shape (500,5) into shape (500,)
最新发布