NIPS2014
思路:
将unlabeled 图像进行旋转、平移、增强等操作,组成不同的数据集合(同一图像生成的图像为同一数据集合)。利用CNN 将不同数据集合区分开。
目标:
区分不同图像,保证平移等变换的鲁棒性。
网络结构:
small: two convolutional layers with 64 filters each followed by a fully connected layer with 128 neurons.
large: three convolutional layers with 64,128,256 filters respectively followed by a fully connected layer with 512 neurons.
kernel size: 5*5
2*2 max pooling after the first two convolutional layers
dropout was applied to the fully connected layers
code and training data :