已知多项式F(x)F(x)F(x),求满足条件的G(x)G(x)G(x)使得
F(x)G(x)≡1(modxn)F(x)G(x)\equiv1\pmod{x^n}F(x)G(x)≡1(modxn)
考虑迭代求解
令
F(x)G0(x)≡1 (modx⌈n2⌉)F(x)G_0(x)\equiv1\ \pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}F(x)G0(x)≡1 (modx⌈2n⌉)
作差可得
F(x)(G(x)−G0(x))≡0(modx⌈n2⌉)F(x)\big(G(x)-G_{0}(x)\big)\equiv0\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}F(x)(G(x)−G0(x))≡0(modx⌈2n⌉)
除去F(x)F(x)F(x),得
G(x)−G0(x)≡0(modx⌈n2⌉)G(x)-G_0(x)\equiv0\pmod{x^{\left\lceil\frac{n}{2}\right\rceil}}G(x)−
多项式算法2:多项式求逆
最新推荐文章于 2019-06-02 11:55:45 发布