昨天帮朋友做网易的笔试题(吐槽一下网易的题目有点变态),遇到了一道翻转树的题,于是抽空做了一下。
翻转树的结构,如果在层序遍历时将孩子数组翻转输出并没有改变树的结构,当然你可以先这样输出再建树,这样做会比较麻烦,正确的做法是需要递归翻转每个孩子数组。
void MTree::init(MNode *root) {
this->root = root;
}
MNode* MTree::getNode() {
return root;
}
void MTree::putChild(MNode *node, MNode *parent) {
parent->children.push_back(node);
node->Parent = parent;
}
// 先序建树,特点就是父节点都是出现过的,孩子节点都是未出现过的
MTree MTree::construct_tree(vector<vector<int>> root){
MTree tree;
if(root.empty()){
cout << "empty" << endl;
return tree;
}
MNode* node = new MNode;
node->element = root[0][0];
node->Parent = nullptr;
tree.init(node);
mp[root[0][0]] = node;
for(int i = 1; i < root.size(); i++){
MNode* node = new MNode;
node->element = root[i][0];
mp[root[i][0]] = node;
tree.putChild(node, mp[root[i][1]]);
}
return tree;
}
// 先序遍历
void MTree::pre_tranversal() {
this->pre_tranversal(this->root);
}
void MTree::pre_tranversal(MNode *root) {
vector<MNode*> nodes = root->children;
if(root->Parent == nullptr){
pre_order.push_back({root->element, 0});
cout << root->element << "," ;
}
else{
pre_order.push_back({root->element, root->Parent->element});
cout << root->element << "," ;
}
for (int i = 0; i < nodes.size(); i++) {
if (nodes[i]->children.size() > 0)
pre_tranversal(nodes[i]);
else{
cout << nodes[i]->element << "," ;
pre_order.push_back({nodes[i]->element, nodes[i]->Parent->element});
}
}
}
//核心算法
MNode* MTree::invertTree(MNode *root) {
if(root) reverse(root->children.begin(), root->children.end());
else return NULL;
for(int i = 0; i < root->children.size(); i++){
invertTree(root->children[i]);
}
return root;
}
vector<vector<int>> MTree::reverse_node(vector<vector<int>> order){
MTree tree;
tree = tree.construct_tree(order);
MNode* root = tree.getNode(); //得到根节点
invertTree(root);
tree.pre_order = {{}};
tree.pre_tranversal();
return tree.pre_order;
}
完整的测试代码如下,欢迎大家前来优化,可能有部分bug也没时间去调试:
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
#include <map>
using namespace std;
typedef struct MNode {
int element;
vector<MNode*> children;
MNode *Parent;
} MNode;
class MTree {
private:
MNode *root;
public:
vector<vector<int>> pre_order;
vector<vector<int>> post_order;
vector<vector<int>> level_order;
map<int, MNode*> mp;
void init(MNode *root);
MNode* getNode();
void putChild(MNode* node, MNode* parent);
MTree construct_tree(vector<vector<int>> root);
void pre_tranversal();
void pre_tranversal(MNode *root);
void level_tranversal();
void level_tranversal(MNode *root);
MNode* invertTree(MNode *root);
vector<vector<int>> reverse_node(vector<vector<int>> root);
void post_tranversal();
void post_tranversal(MNode *root);
int getMaxDepth(MNode *root, vector<MNode*> nodes);
};
void MTree::init(MNode *root) {
this->root = root;
}
MNode* MTree::getNode() {
return root;
}
void MTree::putChild(MNode *node, MNode *parent) {
parent->children.push_back(node);
node->Parent = parent;
}
// 先序建树,特点就是父节点都是出现过的,孩子节点都是未出现过的
MTree MTree::construct_tree(vector<vector<int>> root){
MTree tree;
if(root.empty()){
cout << "empty" << endl;
return tree;
}
MNode* node = new MNode;
node->element = root[0][0];
node->Parent = nullptr;
tree.init(node);
mp[root[0][0]] = node;
for(int i = 1; i < root.size(); i++){
MNode* node = new MNode;
node->element = root[i][0];
mp[root[i][0]] = node;
tree.putChild(node, mp[root[i][1]]);
}
return tree;
}
// 非先序建树,需要考虑父子节点有没有出现过的情况
// MTree MTree::construct_tree(vector<vector<int>> root){
// MTree tree;
// if(root.empty()){
// cout << "empty" << endl;
// return tree;
// }
// for(int i = 0; i < root.size(); i++){
// if(root[i][1] == 0){ //先找到根节点
// MNode* node = new MNode;
// node->element = root[i][0];
// node->Parent = nullptr;
// tree.init(node);
// mp[root[i][0]] = node;
// }
// }
// for(int i = 0; i < root.size(); i++){
// if(root[i][1] != 0){
// if(mp.find(root[i][0]) == mp.end() && mp.find(root[i][1]) != mp.end()){
// // 孩子节点没出现
// MNode* node = new MNode;
// node->element = root[i][0];
// mp[root[i][0]] = node;
// tree.putChild(node, mp[root[i][1]]);
// }
// else if(mp.find(root[i][0]) == mp.end() && mp.find(root[i][1]) == mp.end()){
// // 父子节点均未出现
// MNode* node1 = new MNode;
// MNode* node2 = new MNode;
// node1->element = root[i][0];
// node2->element = root[i][1];
// mp[root[i][0]] = node1;
// mp[root[i][1]] = node2;
// tree.putChild(mp[root[i][0]], mp[root[i][1]]);
// }
// else if(mp.find(root[i][0]) != mp.end() && mp.find(root[i][1]) != mp.end()){
// // 父子节点均出现过
// tree.putChild(mp[root[i][0]], mp[root[i][1]]);
// }
// }
// }
// return tree;
// }
MNode* MTree::invertTree(MNode *root) {
if(root) reverse(root->children.begin(), root->children.end());
else return NULL;
for(int i = 0; i < root->children.size(); i++){
invertTree(root->children[i]);
}
return root;
}
vector<vector<int>> MTree::reverse_node(vector<vector<int>> order){
MTree tree;
tree = tree.construct_tree(order);
MNode* root = tree.getNode(); //得到根节点
invertTree(root);
tree.pre_order = {{}};
tree.pre_tranversal();
return tree.pre_order;
}
// 先序遍历
void MTree::pre_tranversal() {
this->pre_tranversal(this->root);
}
void MTree::pre_tranversal(MNode *root) {
vector<MNode*> nodes = root->children;
if(root->Parent == nullptr){
pre_order.push_back({root->element, 0});
cout << root->element << "," ;
}
else{
pre_order.push_back({root->element, root->Parent->element});
cout << root->element << "," ;
}
for (int i = 0; i < nodes.size(); i++) {
if (nodes[i]->children.size() > 0)
pre_tranversal(nodes[i]);
else{
cout << nodes[i]->element << "," ;
pre_order.push_back({nodes[i]->element, nodes[i]->Parent->element});
}
}
}
// 层次遍历
void MTree::level_tranversal() {
this->level_tranversal(this->root);
}
void MTree::level_tranversal(MNode *root) {
if(root == nullptr) return;
vector<MNode*> nodes = root->children;
queue<vector<MNode*>> q;
vector<MNode*> tmp;
q.push({root});
while(!q.empty()){
tmp = q.front();
for(int i = 0; i < tmp.size(); i++){
if(!(tmp[i]->children).empty()){
// reverse((tmp[i]->children).begin(), (tmp[i]->children).end());
q.push(tmp[i]->children);
}
}
for(int i = 0; i < q.front().size(); i++){
if(q.front()[i]->Parent == nullptr){ //根节点处理
level_order.push_back({q.front()[i]->element, 0});
cout << q.front()[i]->element << ",";
}
else{
level_order.push_back({q.front()[i]->element, q.front()[i]->Parent->element});
cout << q.front()[i]->element << ",";
}
}
q.pop();
}
}
// 后续遍历
void MTree::post_tranversal() {
this->post_tranversal(this->root);
}
void MTree::post_tranversal(MNode *root) {
vector<MNode*> nodes = root->children;
for (int i = 0; i < nodes.size(); i++) {
if (nodes[i]->children.size() > 0)
post_tranversal(nodes[i]);
else{
cout << nodes[i]->element << "," ;
post_order.push_back({nodes[i]->element, nodes[i]->Parent->element});
}
}
if(root->Parent == nullptr){
post_order.push_back({root->element, 0});
cout << root->element << "," ;
}
else{
post_order.push_back({root->element, root->Parent->element});
cout << root->element << "," ;
}
}
int MTree::getMaxDepth(MNode *root,vector<MNode*> nodes) {
auto iResult = 0;
return iResult;
}
int main(){
// vector<vector<int>> root = {{5,2},{1,0},{2,1},{6,5},{3,1},{7,5},{4,1}};
vector<vector<int>> root = {{1,0},{2,1},{5,2},{6,5},{3,1},{7,5},{4,1}};
MTree tree;
tree = tree.construct_tree(root);
tree.pre_tranversal();
cout << endl << "pre order"<< endl;
// 打印树的先序遍历数组
for (auto it = tree.pre_order.begin(); it != tree.pre_order.end() ; it++) {
for (int i = 0; i < (*it).size(); i++)
cout << (*it)[i] << " " ;
cout << endl;
}
tree.post_tranversal();
cout << endl << "post order"<< endl;
// 打印树的后序遍历数组
for (auto it = tree.post_order.begin(); it != tree.post_order.end() ; it++) {
for (int i = 0; i < (*it).size(); i++)
cout << (*it)[i] << " " ;
cout << endl;
}
// 打印树的层次遍历数组
tree.level_tranversal();
cout << endl << "level order"<< endl;
for (auto it = tree.level_order.begin(); it != tree.level_order.end() ; it++) {
for (int i = 0; i < (*it).size(); i++)
cout << (*it)[i] << " " ;
cout << endl;
}
cout << "reverse" << endl;
vector<vector<int>> res = tree.reverse_node(root);
for (auto it = res.begin(); it != res.end() ; it++) {
for (int i = 0; i < (*it).size(); i++)
cout << (*it)[i] << " " ;
cout << endl;
}
}
本文介绍了一种翻转树结构的算法实现,通过递归方式翻转树的子节点,实现了树结构的翻转。文章提供了详细的代码示例,包括树的构建、遍历和翻转过程。

被折叠的 条评论
为什么被折叠?



