简介:在互联网行业红利已过、在获客成本越来越高、在用户在线时长全网基本无增长以及信息大爆炸的情况下,如何更好的转化新用户和提升老用户粘性就变得至关重要,智能化的个性化推荐无疑是经过验证的重要手段之一,我们每天使用的移动App或企业内都处处有其身影。
本文作者 吴世龙 阿里云智能 高级产品专家
直播视频请点击 直播 观看。
一、背景介绍
行业趋势
“2018年天猫双11共产生了453亿次AI个性化推荐,阿里巴巴副总裁、淘宝总裁蒋凡表示淘宝可能是全世界最大人工智能的应用,他说:“在今年双11我们也可以看到,基于个性化推荐的流量已经超过了搜索等方式带来的流量,这是一个非常非常大的变化”
信息爆炸一词最早出现在20世纪80年代,各种信息以指数级增长,如何处理过载的信息成为了重要的问题,而这对于无论是消费者还是信息发布者还是承载的平台,都意味着眼下和未来都面临着巨大的挑战,而个性化推荐系统的本质则是高效连接信息和用户,于用户满意度提升,于信息发布者获得合理的用户群,于平台价值转化最大化。
MaxCompute产品背景
MaxCompute 是面向分析的企业级 SaaS 模式云数据仓库,以 Serverless 架构提供快速、全托管的在线数据仓库服务,消除了传统数据平台在资源扩展性和弹性方面的限制,最小化用户运维投入,使您可以经济并高效的分析处理海量数据。数以万计的企业正基于 MaxCompute 进行数据计算与分析,将数据高效转换为业务洞察。
智能推荐产品背景
智能推荐,基于阿里巴巴领先的大数据和人工智能技术,根据用户的兴趣偏好,解决用户需求和内容展示中间的关联问题。结合阿里巴巴在电商、内容、新闻、视频直播和社交等多个行业领域的积累,为全球企业及开发者提供云推荐服务与机器学习平台。
智能推荐在我们生活和工作中都是会遇到的,比如某工业客户,在企业内部有许多的资料供员工查看。智能推荐不止是对于ToC的企业,ToB的企业在企业内部,包括一些知名的企业,内部都是用很多资料,能够让员工方便的,快速的,高效的供员工查看。这个需求在ToB企业中也是普遍现象。ToC企业的需求更加明显,如果大家关注行业报告,会发现互联网的红利已经基本结束,用户的渗透率已经很高。那在行业发展和用户增量达到瓶颈时,用户的在线时长从2020年的6.1小时,仅仅增加到6.3小时,用户的在线时间基本上处于停滞不增加的阶段。那企业随之也会面临两个问题,一企业用户获客成本越来越高,增量的难度也越来越高。二获客成本越来越高的情况下,存量客户怎么去增加在线时长。从这两个问题表明,如何充分、高效转化不管是增量还是存量的用户,对于企业来说都是非常重要的一环。
二、智能推荐业务场景与价值
哪些行业需要智能推荐
不管是电商行业、内容行业、新闻行业包括上文讲到的行业,其实行行业业都会用到智能推荐。大家一听到智能推荐都会想到ToC的行业,但ToB的行业也是需要智能推荐,因为企业内部有大量的资料和文章。推荐本身已经渗透到我们平时用到的产品的方方面面,从产品形态来看电商,内容,新闻等都有它的身影,通过大数据+算法预测出我们更感兴趣的内容,极大的改善了用户体验;

痛点
电商/零售行业
•获客成本高用户留存差
•成交转化率低复购率低
•人工规则推荐效率低效果差
内容/资讯/视频行业
•获客成本高用户留存差
•用户粘性/活跃度低
•人工规则推荐效率低效果差
场景
电商/零售行业
•App首页瀑布流
•店铺首页瀑布流
•商品详情页
•卖场活动页
•其他
内容/资讯/视频行业
•首页瀑布流
•内容/资讯/视频详情页
•主题/专题瀑布流
客户使用智能推荐后的效果
从下图表中可以看出,在企业使用完智能推荐之后,各项效果指标有了明显的提升。
某知名垂类社区商城 |
某知名垂类电商 |
中青看点个性化推荐 |
某食谱类APP |
|
|

在互联网竞争激烈的环境下,利用智能化的个性化推荐成为提升用户体验和企业效率的关键。阿里云的智能推荐服务,基于MaxCompute的数据处理能力,为企业提供高效、精准的推荐解决方案。该服务能显著提高电商、内容行业的成交转化率、用户粘性和在线时长,同时降低获客成本。通过实时推荐、负反馈系统和多场景适配,智能推荐实现了与用户的实时互动,确保推荐效果。企业通过智能推荐可以快速搭建服务,节省成本并提升业务效果。


最低0.47元/天 解锁文章
4040

被折叠的 条评论
为什么被折叠?



