简介: 智能客服在解决客户高频业务问题的同时,也需要提供给客户多维度的、具有类人能力的助理、导购、语聊和娱乐等服务能力,提高客户对智能客服机器人的整体满意度。在此过程中,情感分析技术在机器人类人能力建设中起到了至关重要的作用。本文将围绕智能客服系统中人机结合的服务形式,从五个维度总结和介绍情感分析技术在智能客服系统中的应用场景,包括情感分析算法模型的原理及实际落地使用方式和效果分析。
本文作者:宋双永 王超 陈海青

引言
人机对话一直是自然语言处理领域内的重要研究方向之一,近年来随着人机交互技术的进步,对话系统正逐渐走向实际应用。其中,智能客服系统受到了很多企业尤其是中大型企业的广泛关注。智能客服系统旨在解决传统客服模式需要大量人力的状况,在节约人力的同时,使得人工客服在针对特别问题或者特别用户时能够提供更高质量的服务,从而实现“智能客服 + 人工客服”在服务效率和服务质量两个维度上的整体提升。近年来,许多中大型公司都已经构建了自己的智能客服体系,例如富士通的 FRAP、京东的 JIMI 和阿里巴巴的 AliMe 等。
智能客服系统的构建需要依托于行业数据背景,并基于海量知识处理和自然语言理解等相关技术。初代智能客服系统主要面对业务内容,针对高频的业务问题进行回复解决,此过程依赖于业务专家对高频业务问题答案的准确整理,主要的技术点在于精准的用户问题和知识点之间的文本匹配能力。新型的智能客服系统将服务范围定义为泛业务场景,除了解决处理核心的高频业务问题,智能导购能力、障碍预测能力、智能语聊能力、生活助理功能以及生活娱乐交互等方面的需求也同样被重视和涵盖。其中,情感能力做为类人能力的重要体现,已经在智能客服系统的各个维度的场景中被实际应用,并且对系统类人能力的提升起到了至关重要的作用。
一 智能客服系统中情感分析技术架构

图 1 给出了经典的人机结合的智能客服模式,用户能够通过对话的方式,接受来自机器人或者人工客服的服务,并且在接受机器人服务的过程中,能够利用指令的方式或者机器人自动识别的方式跳转到人工客服。在上述的完整客服模式中,情感分析技术已经被实际应用在多个维度的能力之上。

最低0.47元/天 解锁文章
4021

被折叠的 条评论
为什么被折叠?



