调参贝叶斯优化(BayesianOptimization)

from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.ensemble import RandomForestClassifier as RFC
from sklearn.svm import SVC

from bayes_opt import BayesianOptimization
from bayes_opt.util import Colours


def get_data():
    """Synthetic binary classification dataset."""
    data, targets = make_classification(
        n_samples=1000,
        n_features=45,
        n_informative=12,
        n_redundant=7,
        random_state=134985745,
    )
    return data, targets


def svc_cv(C, gamma, data, targets):
    """SVC cross validation.
    This function will instantiate a SVC classifier with parameters C and
    gamma. Combined with data and targets this will in turn be used to perform
    cross validation. The result of cross validation is returned.
    Our goal is to find combinations of C and gamma that maximizes the roc_auc
    metric.
    """
    estimator = SVC(C=C, gamma=gamma, random_state=2)
    cval = cross_val_score(estimator, data, targets, scoring='roc_auc', cv=4)
    return cval.mean()


def rfc_cv(n_estimators, min_samples_split, max_features, data, targets):
    """Random Forest cross validation.
    This function will instantiate a random forest classifier with parameters
    n_estimators, min_samples_split, and max_features. Combined with data and
    targets this will in turn be used to perform cross validation. The result
    of cross validation is returned.
    Our goal is to find combinations of n_estimators, min_samples_split, and
    max_features that minimzes the log loss.
    """
    estimator = RFC(
        n_estimators=n_estimators,
        min_samples_split=min_samples_split,
        max_features=max_features,
        random_state=2
    )
    cval = cross_val_score(estimator, data, targets, scoring='neg_log_loss', cv=4)
    return cval.mean()


def optimize_svc(data, targets):
    """Apply Bayesian Optimization to SVC parameters."""

    def svc_crossval(expC, expGamma):
        """Wrapper of SVC cross validation.
        Notice how we transform between regular and log scale. While this
        is not technically necessary, it greatly improves the performance
        of the optimizer.
        """
        C = 10 ** expC
        gamma = 10 ** expGamma
        return svc_cv(C=C, gamma=gamma, data=data, targets=targets)

    optimizer = BayesianOptimization(
        f=svc_crossval,
        pbounds={"expC": (-3, 2), "expGamma": (-4, -1)},
        random_state=1234,
        verbose=2
    )
    optimizer.maximize(n_iter=10)

    print("Final result:", optimizer.max)


def optimize_rfc(data, targets):
    """Apply Bayesian Optimization to Random Forest parameters."""

    def rfc_crossval(n_estimators, min_samples_split, max_features):
        """Wrapper of RandomForest cross validation.
        Notice how we ensure n_estimators and min_samples_split are casted
        to integer before we pass them along. Moreover, to avoid max_features
        taking values outside the (0, 1) range, we also ensure it is capped
        accordingly.
        """
        return rfc_cv(
            n_estimators=int(n_estimators),
            min_samples_split=int(min_samples_split),
            max_features=max(min(max_features, 0.999), 1e-3),
            data=data,
            targets=targets,
        )

    optimizer = BayesianOptimization(
        f=rfc_crossval,
        pbounds={
            "n_estimators": (10, 250),
            "min_samples_split": (2, 25),
            "max_features": (0.1, 0.999),
        },
        random_state=1234,
        verbose=2
    )
    optimizer.maximize(n_iter=10)

    print("Final result:", optimizer.max)


if __name__ == "__main__":
    data, targets = get_data()

    print(Colours.yellow("--- Optimizing SVM ---"))
    optimize_svc(data, targets)

    print(Colours.green("--- Optimizing Random Forest ---"))
    optimize_rfc(data, targets)

转载于:https://www.cnblogs.com/chenxiangzhen/p/10636896.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值