代码实例:如何使用 TensorFlow 2.0 Preview

本文介绍了如何从 TensorFlow 1.12 迁移到 2.0 Preview,包括代码转换工具的使用、安装方法,并详细探讨了 TensorFlow 2.0 的新特性,如默认启用的 Eager Execution、Keras 为主的代码风格、删除的 collections 等。同时,通过 Logistic Regression 示例展示了 TensorFlow 2.0 更加简洁易懂的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

去年8月13日,谷歌宣布 “TensorFlow 2.0 is coming”,
最近几天,谷歌 TensorFlow 团队刚刚发布了 TensorFlow 2.0 Preview 版
可以来这里查看:

现在还不是最终版本,而且可能还不太稳定,不过大家都可以开始尝试,并提出建议和反馈,请查看如何提交报告:

本文结构:

  1. 从 TensorFlow 1.12 到 TensorFlow 2.0 preview 代码转换方法
  2. TensorFlow 2.0 安装方法
  3. 为什么要有 TensorFlow 2.0
  4. TensorFlow 2.0 有哪些新的变化
  5. 代码:Logistic Regression

1. 还有从 TensorFlow 1.12 到 TensorFlow 2.0 preview 的代码转换工具 tf_upgrade_v2项目地址:

用法举例:

!tf_upgrade_v2

# 选择 input file,输出 output file
tf_upgrade_v2 --infile foo.py --outfile foo-upgraded.py

# 将整个目录进行变换
tf_upgrade_v2 --intree coolcode --outtree coolcode-upgraded

转换后的结果会保存在 report.txt


2. TensorFlow 2.0 preview 的安装方法如下:

# 创建一个名为 python36 的 Python3.6 环境
conda create -n python36 python=3.6
# 进入环境
source activate python36
# 使用 pip 安装 TensorFlow 2.0 Preview:
pip install tf-nightly-2.0-preview
# 安装 GPU 版本
pip install tf-nightly-gpu-2.0-preview

3. 在 Github 上有一个 TensorFlow 2.0 的教程 repo:

目前有三个练习,

  1. Neural Nets with
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值