正态分布为什么常见

博客介绍了统计学中正态分布常见的真正原因是中心极限定理,即多个独立统计量和的平均值符合正态分布。还指出正态分布适用于因素累加情况,若因素相互加强影响,结果可能是对数正态分布,如财富分布就是对数正态分布。

作者:阮一峰

链接:

http://www.ruanyifeng.com/blog/2017/08/normal-distribution.html

编辑:石头

统计学里面,正态分布(normal distribution)最常见 。男女身高、寿命、血压、考试成绩、测量误差等等,都属于正态分布。

以前,我认为中间状态是事物的常态,过高和过低都属于少数,这导致了正态分布的普遍性。最近,读到了 John D. Cook 的文章,才知道我的这种想法是错的。

正态分布为什么常见?真正原因是中心极限定理(central limit theorem)

"多个独立统计量的和的平均值,符合正态分布。"

上图中,随着统计量个数的增加,它们和的平均值越来越符合正态分布。

根据中心极限定理,如果一个事物受到多种因素的影响,不管每个因素本身是什么分布,它们加总后,结果的平均值就是正态分布。

举例来说,人的身高既有先天因素(基因),也有后天因素(营养)。每一种因素对身高的影响都是一个统计量,不管这些统计量本身是什么分布,它们和的平均值符合正态分布。(注意:男性身高和女性身高都是正态分布,但男女混合人群的身高不是正态分布。)

许多事物都受到多种因素的影响,这导致了正态分布的常见。

读到这里,读者可能马上就会提出一个问题:正态分布是对称的(高个子与矮个子的比例相同),但是很多真实世界的分布是不对称的 。

比如,财富的分布就是不对称的,富人的有钱程度(可能比平均值高出上万倍),远远超出穷人的贫穷程度(平均值的十分之一就是赤贫了),即财富分布曲线有右侧的长尾。相比来说,身高的差异就小得多,最高和最矮的人与平均身高的差距,都在30%多。

这是为什么呢,财富明明也受到多种因素的影响,怎么就不是正态分布呢?

原来,正态分布只适合各种因素累加的情况,如果这些因素不是彼此独立的,会互相加强影响,那么就不是正态分布了。一个人是否能够挣大钱,由多种因素决定:

家庭

教育

运气

工作

...

这些因素都不是独立的,会彼此加强 。如果出生在上层家庭,那么你就有更大的机会接受良好的教育、找到高薪的工作、遇见好机会,反之亦然。也就是说,这不是 1 + 1 = 2 的效果,而是 1 + 1 > 2。

统计学家发现,如果各种因素对结果的影响不是相加,而是相乘,那么最终结果不是正态分布,而是对数正态分布(log normal distribution),即 x 的对数值log(x)满足正态分布 。

这就是说,财富的对数值满足正态分布。如果平均财富是10,000元,那么1000元~10,000元之间的穷人(比平均值低一个数量级,宽度为9000)与10,000元~100,000元之间的富人(比平均值高一个数量级,宽度为90,000)人数一样多。因此,财富曲线左侧的范围比较窄,右侧出现长尾。

参考链接

Why isn't everything normally distributed?, by John D. Cook

Achievement is not normal, by John D. Cook

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值