超全!19 种损失函数,你能认识几个?

本文详细介绍了PyTorch中19种损失函数的使用方法,包括L1范数损失、均方误差损失、交叉熵损失等,涵盖了从基本的二分类到复杂的多标签分类任务,为深度学习模型的训练提供了全面的指导。
部署运行你感兴趣的模型镜像


  磐创AI分享  

来源 | 智能算法

作者 | mingo_敏

编辑 | 深度学习自然语言处理小编zenRRan

【导读】tensorflow和pytorch很多都是相似的,这里以pytorch为例。

19种损失函数

1. L1范数损失 L1Loss

计算 output 和 target 之差的绝对值。

torch.nn.L1Loss(reduction='mean')

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

2 均方误差损失 MSELoss

计算 output 和 target 之差的均方差。

torch.nn.MSELoss(reduction='mean')

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

3 交叉熵损失 CrossEntropyLoss

当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。

在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。

torch.nn.CrossEntropyLoss(weight=None,ignore_index=-100, reduction='mean')

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

4 KL 散度损失 KLDivLoss

计算 input 和 target 之间的 KL 散度。KL 散度可用于衡量不同的连续分布之间的距离, 在连续的输出分布的空间上(离散采样)上进行直接回归时 很有效.

torch.nn.KLDivLoss(reduction='mean')

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

5 二进制交叉熵损失 BCELoss

二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到1之间.

torch.nn.BCELoss(weight=None, reduction='mean')

参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor

6 BCEWithLogitsLoss

BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中. 该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的 技巧来实现数值稳定.

torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)

参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor

7 MarginRankingLoss
torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')

对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值0


8 HingeEmbeddingLoss
torch.nn.HingeEmbeddingLoss(margin=1.0,  reduction='mean')

对于 mini-batch(小批量) 中每个实例的损失函数如下:

参数:

margin:默认值1

9 多标签分类损失 MultiLabelMarginLoss
torch.nn.MultiLabelMarginLoss(reduction='mean')

对于mini-batch(小批量) 中的每个样本按如下公式计算损失:

10 平滑版L1损失 SmoothL1Loss

也被称为 Huber 损失函数。

torch.nn.SmoothL1Loss(reduction='mean')


其中

11 2分类的logistic损失 SoftMarginLoss
torch.nn.SoftMarginLoss(reduction='mean')



12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss
torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')


13 cosine 损失 CosineEmbeddingLoss
torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')


参数:

margin:默认值0

14 多类别分类的hinge损失 MultiMarginLoss
torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None,  reduction='mean')


参数:

p=1或者2 默认值:1
margin:默认值1

15 三元组损失 TripletMarginLoss

和孪生网络相似,具体例子:给一个A,然后再给B、C,看看B、C谁和A更像。

torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean')


其中:

16 连接时序分类损失 CTCLoss

CTC连接时序分类损失,可以对没有对齐的数据进行自动对齐,主要用在没有事先对齐的序列化数据训练上。比如语音识别、ocr识别等等。

torch.nn.CTCLoss(blank=0, reduction='mean')

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

17 负对数似然损失 NLLLoss

负对数似然损失. 用于训练 C 个类别的分类问题.

torch.nn.NLLLoss(weight=None, ignore_index=-100,  reduction='mean')

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度.

18 NLLLoss2d

对于图片输入的负对数似然损失. 它计算每个像素的负对数似然损失.

torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean')

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值;sum:返回loss的和。默认:mean。

19 PoissonNLLLoss

目标值为泊松分布的负对数似然损失

torch.nn.PoissonNLLLoss(log_input=True, full=False,  eps=1e-08,  reduction='mean')

参数:

log_input (bool, optional) – 如果设置为 True , loss 将会按照公 式 exp(input) - target * input 来计算, 如果设置为 False , loss 将会按照 input - target * log(input+eps) 计算.

full (bool, optional) – 是否计算全部的 loss, i. e. 加上 Stirling 近似项 target * log(target) - target + 0.5 * log(2 * pi * target).

eps (float, optional) – 默认值: 1e-8

参考资料:

pytorch loss function 总结

http://www.voidcn.com/article/p-rtzqgqkz-bpg.html

原文链接:https://blog.youkuaiyun.com/shanglianlm/article/details/85019768

- End -

欢迎扫码关注:

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

知识积累同时被 2 个专栏收录54 篇文章订阅专栏YOLO模型相关33 篇文章订阅专栏系列文章地址YOLO系列基础合集——小白也看得懂的论文精解-优快云博客YOLO系列基础(一)卷积神经网络原理详解与基础层级结构说明-优快云博客YOLO系列基础(二)Bottleneck瓶颈层原理详解-优快云博客YOLO系列基础(三)从ResNet残差网络到C3层-优快云博客YOLO系列基础(四)归一化层(BN层)的前世今生!-优快云博客YOLO系列基础(五)从神经元共适应性到模型Dropout层-优快云博客YOLO系列基础(六)YOLOv1原理详解原理如此清晰-优快云博客YOLO系列基础(七)从数据增强到图像线性变换-优快云博客YOLO系列基础(八)从坐标直接预测到锚框偏移量-优快云博客YOLO系列基础(九)YOLOv2论文及原理详解(上)-优快云博客YOLO系列基础(十)YOLOv2论文及原理详解(下)Darknet-19网络结构-优快云博客目录系列文章地址卷积神经网络的原理及卷积核详解一、卷积神经网络的原理二、卷积层与卷积核详解卷积核的作用卷积核的设计卷积样例与代码说明:卷积核的实际应用三、池化层(Pooling Layer)池化层的作用池化层的设计池化层的代码示例 四、连接层(Fully Connected Layer)连接层的作用连接层的设计代码示例 一个简单的卷积神经网络构建示例卷积神经网络的原理及卷积核详解卷积神经网络(CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一,在自然语言处理和图像领域中有广泛的应用。本文将详细讲解卷积神经网络的原理,并重点探讨卷积层、池化层、连接层的基础层级结构的说明。一、卷积神经网络的原理卷积神经网络的核心操作是卷积操作,它通过对输入数据进行局部感知和特征提取,实现高效的特征表示。卷积操作可以看作是一种类似于加权运算的操作,在图像处理中,针对图像的像素矩阵,卷积操作就是用一个卷积核来逐行逐列地扫描像素矩阵,并与像素矩阵做元素相乘,以此得到新的像素矩阵。卷积神经网络通常由多个卷积层、池化层、连接层等组成。卷积层用于提取输入数据的局部特征池化层用于降低特征图的维度和减少计算量连接层用于将特征图映射到输出类别二、卷积层与卷积核详解卷积核(convolutional kernel)是卷积神经网络中的核心组件,它是一种可学习的参数,用于从输入数据中提取特征。卷积核可以从输入数据中提取出特定的特征,例如边缘、角点、纹理等。它通过卷积操作对输入数据进行局部感知和特征提取。卷积操作可以看作是一种类似于加权运算的操作,使用一个卷积核(也称为滤波器)在输入数据上进行滑动窗口式的局部加权求和,以此得到新的特征图。卷积核的作用特征提取:卷积核通过滑动窗口的方式在输入数据上进行局部感知,提取出输入数据的局部特征。这些特征可以是边缘、角点、纹理等。参数共享:卷积神经网络中的卷积核是共享的,即在整个网络中使用同一个卷积核。这种参数共享可以大大减少网络的参数数量,降低过拟合的风险。稀疏连接:每个卷积核只与输入数据的一小部分相连,这种稀疏连接可以减少网络的计算量,提高网络的计算效率。局部感知:卷积核通过局部感知的方式提取输入数据的特征,这种方式符合人类观察物体的习惯。人类观察物体时,也是从局部开始认识,然后逐渐扩展到整体。卷积核的设计大小:卷积核的大小决定了卷积的感受野大小。常用的卷积核大小有1x1、3x3、5x5等。较小的卷积核可以提取出更加局部的特征,而较大的卷积核可以提取出更加局的特征。数量:卷积核的数量决定了输出特征图的通道数。多个卷积核可以提取出输入数据中的不同特征。初始化:卷积核的初始化可以影响网络的训练效果。常用的初始化方法有随机初始化、Xavier初始化、He初始化等。步幅(Stride):卷积核在输入数据上滑动时每次移动的像素数,决定了输出特征图的尺寸。填充(Padding):在输入数据的边界上填充额外的像素值,以控制输出特征图的尺寸。卷积样例与代码说明:​import torchimport torch.nn as nn # 定义一个简单的卷积层,输入通道数为3、输出通道数为16、卷积核大小为3*3、步长为2、填充数为1# 填充是为了保持输入和输出数据的空间维度一致(在stride=1且kernel_size为奇数时)。conv_layer = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding=1) # 创建一个随机输入张量(假设输入图像大小为32x32,通道数为3)input_tensor = torch.randn(1, 3, 32, 32) # 应用卷积层output_tensor = conv_layer(input_tensor)print(output_tensor.shape) # 输出形状应为[1, 16, 32, 32](假设stride=1, padding=1)卷积核的实际应用卷积核在图像处理、计算机视觉、自然语言处理等领域都有广泛的应用。图像处理:卷积核可以用于图像的边缘检测、模糊与平滑、锐化等操作。例如,Sobel算子是一种常用的边缘检测卷积核,它可以通过计算亮度梯度来识别图像中的边缘信息。计算机视觉:卷积神经网络在目标检测、图像分类、图像分割等任务中取得了显著的效果。卷积核通过提取图像的特征,实现了对图像的高效表示和分类。自然语言处理:卷积核也可以用于自然语言处理中的文本分类、情感分析、命名实体识别等任务。通过提取文本中的n-gram特征,卷积核可以实现对文本的高效表示和分类。三、池化层(Pooling Layer)池化层(Pooling Layer)是卷积神经网络(CNN)中的关键组件之一,它紧随卷积层之后,用于进一步处理特征图,以降低数据的维度、减少计算量,并增强网络的鲁棒性。以下是对池化层的作用、设计以及有效性的详细说明。常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。通过一个滑动窗口来获取滑动窗口内的值,并选取最大值 or 求平均池化层的作用降维:通过下采样操作减少特征图的尺寸。用以增加计算效率特征不变性:池化操作保留了输入数据中最显著的特征,增强了网络对输入数据局部变化的鲁棒性。减少过拟合:通过减少特征图的维度和参数数量,池化层有助于降低模型对训练数据的过拟合风险。这提高了模型在未见过的数据上的表现能力。池化层的设计池化类型:常见的池化操作包括最大池化(Max Pooling)和平均池化(Average Pooling)。最大池化选取池化窗口中的最大值作为输出,而平均池化则计算池化窗口中的平均值作为输出。此外,还有一些其他类型的池化操作,如随机池化(Stochastic Pooling)等,但它们在实际应用中相对较少。池化窗口:池化窗口的大小决定了每次下采样操作覆盖的输入特征区域。常见的池化窗口大小有2x2、3x3等。较小的池化窗口可以保留更多的细节信息,而较大的池化窗口则可以进一步降低特征图的维度。步幅:步幅决定了池化窗口在输入特征图上滑动的距离。当步幅等于池化窗口的大小时,池化操作将不重叠地应用于输入特征图。较大的步幅可以更快地降低特征图的尺寸。池化层的代码示例 # 定义一个最大池化层,卷积核大小为2*2,步长为2,最大池化层选取2*2大小中最大的数值作为代表max_pool_layer = nn.MaxPool2d(kernel_size=2, stride=2) # 应用池化层到卷积层的输出pooled_output = max_pool_layer(output_tensor)print(pooled_output.shape) # 输出形状应为[1, 16, 16, 16](假设输入形状为[1, 16, 32, 32],kernel_size=2, stride=2)四、连接层(Fully Connected Layer)原理:连接层位于CNN的末端,用于将卷积层和池化层提取的特征映射到输出类别或回归值。每个神经元都与前一层的所有神经元相连,因此参数数量通常较大。连接层的作用特征整合:连接层的主要作用是对前面卷积层或池化层提取到的特征进行整合。它通过将每个神经元与前一层的所有神经元相连,实现了对局特征的面利用。这种整合有助于网络学习到更加复杂和抽象的特征表示。分类与回归:在神经网络的末端,连接层通常用于输出分类结果或回归值。通过引入非线性激活函数(如Softmax或Sigmoid),连接层可以将特征向量映射到类别标签或回归值上,从而实现最终的预测任务。
04-07
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值