基于MTD的NANDFLASH设备驱动底层实现原理分析(七) .

本文深入探讨NAND Flash设备驱动的底层实现原理,重点介绍了探针函数如何与NAND芯片交互、读取芯片ID、查找或建立坏块表及添加分区的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上接:

基于MTD的NANDFLASH设备驱动底层实现原理分析(六)

初始化基本的硬件配置后probe函数就会开始与NAND芯片进行交互了,它要做的事情主要包括这几个方面:读取NAND芯片的ID,然后查表得到这片NAND芯片的如厂商,page size,erase size以及chip size等信息,接着,根据struct nand_chip中options的值的不同,或者在NAND芯片中的特定位置查找bad block table,或者scan整个NAND芯片,并在内存中建立bad block table。这些都由nand_scan()完成。

nand_scan函数主要有两个两个函数组成,即nand_scan_ident函数和nand_scan_tail函数。其中nand_scan_ident函数会读取NAND芯片的ID,而nand_scan_tail函数则会查找或者建立bbt (bad block table)。
最后调用add_mtd_partitions()添加板层文件platform中定义的分区表。

      d)nand_chip的初始化,关于nand_chip上第5编文章中已介绍

 /**初始化nand_chip结构**/
static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
                   struct s3c2410_nand_mtd *nmtd,
                   struct s3c2410_nand_set *set)
{
    struct nand_chip *chip = &nmtd->chip;//&nmtd->chip=&(nmtd->chip)
    void __iomem *regs = info->regs;//用于保存地址的。。
     /**下面这一段是在给nand_chip中的函数指针赋值**/
    chip->write_buf    = s3c2410_nand_write_buf;
    chip->read_buf     = s3c2410_nand_read_buf;
    chip->select_chip  = s3c2410_nand_select_chip;
    chip->chip_delay   = 50;//延迟时间
    chip->priv       = nmtd; //这个是很重要的将struct s3c2410_nand_mtd赋值给nand_chip的私有数据成员
    chip->options       = 0;//在第5篇文章中有介绍这个地方好像错了,或许后面会有赋值,因为没有0定义这个宏
    chip->controller   = &info->controller;//指向struct nand_hw_control  的指针
 。。。。。。。。。。。。。。。。
    case TYPE_S3C2440:
        chip->IO_ADDR_W = regs + S3C2440_NFDATA;//2440NAND数据寄存器
        info->sel_reg   = regs + S3C2440_NFCONT;//2440NAND控制寄存器
        info->sel_bit    = S3C2440_NFCONT_nFCE;//1<<1,此刻芯片片选信号为disable,默认就是disable的
        chip->cmd_ctrl  = s3c2440_nand_hwcontrol;//控制ALE/CLE/nCE,也用于写命令和地址
        chip->dev_ready = s3c2440_nand_devready;//设备就绪
        chip->read_buf  = s3c2440_nand_read_buf;//将芯片中的数据读到缓冲区中
        chip->write_buf    = s3c2440_nand_write_buf;//将缓冲区中的数据写入芯片
        break;

        。。。。。。。。。。。。。。。。
      }

    chip->IO_ADDR_R = chip->IO_ADDR_W;

    nmtd->info       = info;
    nmtd->mtd.priv       = chip; //把指向struct nand_chip结构体的指针赋给struct mtd_infopriv成员变量,因为MTD Core中很多函数之间的调用都只传递struct mtd_info,它需要通过priv成员变量得到struct nand_chip
    nmtd->mtd.owner    = THIS_MODULE;
    nmtd->set       = set;
    /**如果采用硬件ECC**/
    if (hardware_ecc) {
        chip->ecc.calculate = s3c2410_nand_calculate_ecc;
        chip->ecc.correct   = s3c2410_nand_correct_data;
        chip->ecc.mode        = NAND_ECC_HW;
        switch (info->cpu_type) {
     。。。。。。。。。。。。。。。。
        case TYPE_S3C2440:
              chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
              chip->ecc.calculate = s3c2440_nand_calculate_ecc;
            break;
        }
    } else {

       //使用软件校验

        chip->ecc.mode        = NAND_ECC_SOFT;
    }
      /**ECC*/
    if (set->ecc_layout != NULL)
        chip->ecc.layout = set->ecc_layout;
     /**禁止ECC*/
    if (set->disable_ecc)
        chip->ecc.mode    = NAND_ECC_NONE;

    switch (chip->ecc.mode) {
    。。。。。。。。。。。
    }

    /* If you use u-boot BBT creation code, specifying this flag will
     * let the kernel fish out the BBT from the NAND, and also skip the
     * full NAND scan that can take 1/2s or so. Little things... */
    if (set->flash_bbt)//当flashbbt=1的时候系统在启动的时候将跳过对bbt的扫描
        chip->options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
}

接下来是读取芯片的ID调用int nand_scan_ident(struct mtd_info *mtd, int maxchips)函数该函数是通用的,定义在nand_base.c中暂时还没研究过

/**读取芯片的ID**/
        nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
                         (sets) ? sets->nr_chips : 1);
      
        if (nmtd->scan_res == 0) {  /**如果读取成功则返回0**/
            s3c2410_nand_update_chip(info, nmtd);//更新,下面看看它的原型
            nand_scan_tail(&nmtd->mtd);//查找或者建立bbt(bad block table)
            s3c2410_nand_add_partition(info, nmtd, sets);//添加分区,与板层文件相关

           //这个函数的实现那肯定就是调用add_mtd_device(&mtd->mtd)。。。

        }

    e)s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
                     struct s3c2410_nand_mtd *nmtd)分析

static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
                     struct s3c2410_nand_mtd *nmtd)
{
    struct nand_chip *chip = &nmtd->chip;

    dev_dbg(info->device, "chip %p => page shift %d\n",
        chip, chip->page_shift);

    if (chip->ecc.mode != NAND_ECC_HW)//如果不是硬件校验则直接返回
        return;

        /* change the behaviour depending on wether we are using
         * the large or small page nand device */

    if (chip->page_shift > 10) { //page_shift用位来表示页的大小 大于2KB的大页
        chip->ecc.size        = 256;
        chip->ecc.bytes        = 3;
    } else {      小页
        chip->ecc.size        = 512;
        chip->ecc.bytes        = 3;
        chip->ecc.layout    = &nand_hw_eccoob;
    }

     对于这些关于ECC_LAYOUT的暂时还是不怎么懂的。。。。。。

}

看看上面用到的nand_hw_eccoob它是一个结构体用来管理OOB中的ECC和坏块的(第5篇中有详细的说明)

static struct nand_ecclayout nand_hw_eccoob = {
    .eccbytes = 3,
    .eccpos = {0, 1, 2},//ECC在OOB中的位置
    .oobfree = {{8, 8}}//空闲的OOB字节区域
};

*******************

在上面初始化nand_chip的时候,其中nand_chip里面有一个这样的(struct nand_ecc_ctrl)结构体.里面有许多的成员函数,在初始化的过程中都赋上了值同时nand_chip中也有许多成员函数赋上了值.。至于它们是怎么实现的,看看返回去看看他们的实现。难度不大。。。。。

 

http://blog.youkuaiyun.com/bingqingsuimeng/article/details/7968361

资源下载链接为: https://pan.quark.cn/s/abbae039bf2a 无锡平芯微半导体科技有限公司生产的A1SHB三极管(全称PW2301A)是一款P沟道增强型MOSFET,具备低内阻、高重复雪崩耐受能力以及高效电源切换设计等优势。其技术规格如下:最大漏源电压(VDS)为-20V,最大连续漏极电流(ID)为-3A,可在此条件下稳定工作;栅源电压(VGS)最大值为±12V,能承受正反向电压;脉冲漏极电流(IDM)可达-10A,适合处理短暂高电流脉冲;最大功率耗散(PD)为1W,可防止器件过热。A1SHB采用3引脚SOT23-3封装,小型化设计利于空间受限的应用场景。热特性方面,结到环境的热阻(RθJA)为125℃/W,即每增加1W功率损耗,结温上升125℃,提示设计电路时需考虑散热。 A1SHB的电气性能出色,开关特性优异。开关测试电路及波形图(图1、图2)展示了不同条件下的开关性能,包括开关上升时间(tr)、下降时间(tf)、开启时间(ton)和关闭时间(toff),这些参数对评估MOSFET在高频开关应用中的效率至关重要。图4呈现了漏极电流(ID)与漏源电压(VDS)的关系,图5描绘了输出特性曲线,反映不同栅源电压下漏极电流的变化。图6至图10进一步揭示性能特征:转移特性(图7)显示栅极电压(Vgs)对漏极电流的影响;漏源开态电阻(RDS(ON))随Vgs变化的曲线(图8、图9)展现不同控制电压下的阻抗;图10可能涉及电容特性,对开关操作的响应速度和稳定性有重要影响。 A1SHB三极管(PW2301A)是高性能P沟道MOSFET,适用于低内阻、高效率电源切换及其他多种应用。用户在设计电路时,需充分考虑其电气参数、封装尺寸及热管理,以确保器件的可靠性和长期稳定性。无锡平芯微半导体科技有限公司提供的技术支持和代理商服务,可为用户在产品选型和应用过程中提供有
资源下载链接为: https://pan.quark.cn/s/9648a1f24758 在 JavaScript 中实现点击展开与隐藏效果是一种非常实用的交互设计,它能够有效提升用户界面的动态性和用户体验。本文将详细阐述如何通过 JavaScript 实现这种功能,并提供一个完整的代码示例。为了实现这一功能,我们需要掌握基础的 HTML 和 CSS 知识,以便构建基本的页面结构和样式。 在这个示例中,我们有一个按钮和一个提示框(prompt)。默认情况下,提示框是隐藏的。当用户点击按钮时,提示框会显示出来;再次点击按钮时,提示框则会隐藏。以下是 HTML 部分的代码: 接下来是 CSS 部分。我们通过设置提示框的 display 属性为 none 来实现默认隐藏的效果: 最后,我们使用 JavaScript 来处理点击事件。我们利用事件监听机制,监听按钮的点击事件,并通过动态改变提示框的 display 属性来实现展开和隐藏的效果。以下是 JavaScript 部分的代码: 为了进一步增强用户体验,我们还添加了一个关闭按钮(closePrompt),用户可以通过点击该按钮来关闭提示框。以下是关闭按钮的 JavaScript 实现: 通过以上代码,我们就完成了点击展开隐藏效果的实现。这个简单的交互可以通过添加 CSS 动画效果(如渐显渐隐等)来进一步提升用户体验。此外,这个基本原理还可以扩展到其他类似的交互场景,例如折叠面板、下拉菜单等。 总结来说,JavaScript 实现点击展开隐藏效果主要涉及 HTML 元素的布局、CSS 的样式控制以及 JavaScript 的事件处理。通过监听点击事件并动态改变元素的样式,可以实现丰富的交互功能。在实际开发中,可以结合现代前端框架(如 React 或 Vue 等),将这些交互封装成组件,从而提高代码的复用性和维护性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值