ROS Stack Installation

本文档详细介绍了如何在ROS环境中安装第三方软件包和堆栈,包括使用SVN和Git下载源代码,以及从源代码归档安装的方法。适合ROS初学者阅读。

http://wiki.ros.org/ROS/Tutorials/StackInstallation

Note: This page needed proofreading and review. This tutorial assumes that you have completed the previous tutorials: ROS tutorials, ros.org.
(!) It is appreciated that problems/questions regarding this tutorial are asked on answers.ros.org. Don't forget to include in your question the link to this page, versions of your OS & ROS, and also add appropriate tags.

Stack Installation

Description: This tutorial describes how to install 3rd party stacks

Keywords: stack, package, installation, install

Tutorial Level: BEGINNER

What to install

ROS has a growing number of 3rd party software packages that can provide drivers or algorithms you can use on your robot. You can find this software by selecting Browse Software at the top of the page.

Once you have found a package you are interested in you will want to install it. This tutorial will assume that that you are interested in installing the usb_cam package or the laser_ortho_projector package. The instructions for other packages should be roughly the same.

First, you need to locate where your stacks are located by ROS, and depends on your type of installation.

Then, two different ways of installing the repository will be explained:

Using SVN to pull down an entire repository

Using GIT to pull down a repository

Where are your stacks located

ROS stores groups of packages in stacks, and it stores the stacks wherever you want. ROS will search for packages and stacks that are listed in the ROS_PACKAGE_PATH environmental variable.

The location of setup.sh and the default for ROS_PACKAGE_PATH depends on how you installed ROS. If you installed using SVN then you should get the following, with username replaced by your username.

ROS installed via SVN

切换行号显示
$ echo $ROS_PACKAGE_PATH
/home/username/ros/stacks
$ more /home/username/ros/setup.sh
export ROS_ROOT=/home/username/ros/ros
export PATH=$ROS_ROOT/bin:$PATH
export PYTHONPATH=$ROS_ROOT/core/roslib/src:$PYTHONPATH
if [ ! "$ROS_MASTER_URI" ] ; then export ROS_MASTER_URI=http://localhost:11311 ;
 fi
export ROS_PACKAGE_PATH=/home/username/ros/stacks
source $ROS_ROOT/tools/rosbash/rosbash

If you installed from pre-compiled binaries of debian packages you should get something similar to this.

ROS installed via Pre-compiled binaries (boxturtle)

切换行号显示
$ echo $ROS_PACKAGE_PATH
/opt/ros/boxturtle/stacks
$ more /opt/ros/boxturtle/setup.sh
export ROS_ROOT=/opt/ros/boxturtle/ros
export PATH=$ROS_ROOT/bin:$PATH
export PYTHONPATH=$ROS_ROOT/core/roslib/src:$PYTHONPATH
if [ ! "$ROS_MASTER_URI" ] ; then export ROS_MASTER_URI=http://localhost:11311 ;
 fi
export ROS_PACKAGE_PATH=/opt/ros/boxturtle/stacks
source $ROS_ROOT/tools/rosbash/rosbash

You can also edit setup.sh if you would like to install your stacks somewhere specific.

export ROS_PACKAGE_PATH=/home/username/ros/stacks:/home/username/project:/home/username/ros_tutorials

Downloading from Source

Most of the packages and stacks you may be interested are available as source code. ROS makes building from source code easy.

Using SVN to pull down an entire repository

So for example lets say you wanted to use the usb_cam driver, and you decided to download the entire Bosch ROS Repository in case there was anything else you needed.

First, make sure you have SVN installed.

切换行号显示
$ sudo aptitude install subversion

If you installed the pre-compiled binary version of ROS then you may want to create a directory to build stacks from source. First edit your ROS_PACKAGE_PATH in /opt/ros/boxturtle/setup.sh or in your .bashrc

export ROS_PACKAGE_PATH=~/ros/stacks:/opt/ros/boxturtle/stacks

Next, in a terminal switch to the directory that is now in your ROS_PACKAGE_PATH.

切换行号显示
   1 $ mkdir ~/ros && mkdir ~/ros/stacks
   2 $ cd ~/ros/stacks

Then you can checkout the trunk from the svn repository listed in the wiki. The trunk if you are curious is the default branch of code in a svn repository, as opposed to the experimental branch.

切换行号显示
   1 $ svn co https://bosch-ros-pkg.svn.sourceforge.net/svnroot/bosch-ros-pkg/trunk/ bosch-ros-pkg

After it is downloaded you can change to the usb_cam directory and compile the source code.

切换行号显示
   1 $ cd bosch-ros-pkg/bosch_drivers/usb_cam
   2 $ rosmake --rosdep-install

--rosdep-install will install system dependencies such as libswscale that the code will need to compile. If rosmake produces an error the first time you run it, try running it again as it may have needed to automatically add the subdirectory to its index.

Using GIT to pull down a repository

The other common software configuration management tool you will see used is Git, so in this part we will use git to pull down the CCNY Robotics Lab ROS Repository and we will build the laser_ortho_projector from source.

First, make sure you have Git installed.

切换行号显示
   1 $ sudo aptitude install git-core

Next, in a terminal switch to a directory that is in your ROS_PACKAGE_PATH. In this case we will assume that you installed ROS from SVN

切换行号显示
   1 cd ~/ros/stacks

Then you can clone the git repository

切换行号显示
   1 git clone http://robotics.ccny.cuny.edu/git/ccny-ros-pkg.git/

Once it has finished downloading switch to the directory and run rosmake

切换行号显示
   1 cd ccny-ros-pkg/scan_tools/laser_ortho_projector
   2 rosmake --rosdep-install

rosmake may need to be run twice to add the new directory, and compile.

Installing from source archive

The developer may have released a version of the software as a source code archive. This might be a file such as scan_tools-0.1.0.tar.bz2, which we will assume is in your ~/Downloads directory.

切换行号显示
   1 cd ~/ros/stacks
   2 mv ~/Downloads/scan_tools-0.1.0.tar.bz2 .
   3 bunzip2 scan_tools-0.1.0.tar.bz2
   4 tar -vpxf scan_tools-0.1.0.tar
   5 rm scan_tools-0.1.0.tar

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压和功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员和工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解和群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值