洛谷 p1484

本文探讨了一道经典的种树问题,在一条直线上有n个坑可以种树,但不能在相邻的坑种树,且最多只能种k棵树。文章提供了一个高效的算法实现,通过合并相邻元素来求解种树的最大获利。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

cyrcyr今天在种树,他在一条直线上挖了n个坑。这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种树。而且由于cyrcyr的树种不够,他至多会种k棵树。假设cyrcyr有某种神能力,能预知自己在某个坑种树的获利会是多少(可能为负),请你帮助他计算出他的最大获利。

输入输出格式

输入格式:

第一行,两个正整数n,k。

第二行,n个正整数,第i个数表示在直线上从左往右数第i个坑种树的获利。

输出格式:

输出1个数,表示cyrcyr种树的最大获利。

思路:
k=1时,显然取n个数中取最大的即可(暂不考虑全负的情况)。设最大的数是a[i]。
k=2时,则有两种可能:1、另取一个与a[i]不相邻的a[j]。2、取a[i-1]和a[i+1]。
我们可以发现:如果k=1时最优解为a[i],那么我们便可以把a[i-1]和a[i+1]进行合并,
因为它们要么同时被选,要么同时落选(证明不难,请自行解决)。而且,我们还注意到:
当选了a[i-1]和a[i+1]时,获利便增加了a[i-1]+a[i+1]-a[i]。所以当a[i]被选时,我们
就可以删去a[i-1]和a[i+1],并把a[i]改成a[i-1]+a[i+1]-a[i],重新找最大的。

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
const int maxn=5e5+10;
int l[maxn],r[maxn],a[maxn];
bool vis[maxn];
struct node
{
	int id;
	ll s;
};
bool operator<(const node &a,const node &b)
{
	return a.s<b.s;
}
priority_queue<node>P;
int main()
{
	int n,k;scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&a[i]);
		l[i]=i-1;r[i]=i+1;
		node e;e.id=i;e.s=a[i];
		P.push(e);
	}
	ll ans=0;
	while(k--)
	{
		while(vis[P.top().id]) P.pop();
		node e=P.top();P.pop();
		if(e.s<0)break;
		ans+=e.s;
		e.s=a[e.id]=a[l[e.id]]+a[r[e.id]]-a[e.id];
		P.push(e);
		vis[l[e.id]]=vis[r[e.id]]=1;
		l[e.id]=l[l[e.id]];r[l[e.id]]=e.id;
		r[e.id]=r[r[e.id]];l[r[e.id]]=e.id;
	}
	printf("%lld\n",ans);
	return 0;
}

### 关于动态规划 (Dynamic Programming, DP) 的解决方案 在解决洛谷平台上的编程问题时,尤其是涉及动态规划的题目,可以采用以下方法来构建解决方案: #### 动态规划的核心思想 动态规划是一种通过把原问题分解为相对简单的子问题的方式来求解复杂问题的方法。其核心在于存储重复计算的结果以减少冗余运算。通常情况下,动态规划适用于具有重叠子问题和最优子结构性质的问题。 对于动态规划问题,常见的思路包括定义状态、转移方程以及边界条件的设计[^1]。 --- #### 题目分析与实现案例 ##### **P1421 小玉买文具** 此题是一个典型的简单模拟问题,可以通过循环结构轻松完成。以下是该问题的一个可能实现方式: ```cpp #include <iostream> using namespace std; int main() { int n; cin >> n; // 输入购买数量n double p, m, c; cin >> p >> m >> c; // 输入单价p,总金额m,优惠券c // 计算总价并判断是否满足条件 if ((double)n * p <= m && (double)(n - 1) * p >= c) { cout << "Yes"; } else { cout << "No"; } return 0; } ``` 上述代码实现了基本逻辑:先读取输入数据,再根据给定约束条件进行验证,并输出最终结果[^2]。 --- ##### **UOJ104 序列分割** 这是一道经典的区间动态规划问题。我们需要设计一个二维数组 `f[i][j]` 表示前 i 次操作后得到的最大价值,其中 j 是最后一次切割的位置。具体实现如下所示: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = 5e3 + 5; long long f[MAXN], sumv[MAXN]; int a[MAXN]; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n,k; cin>>n>>k; for(int i=1;i<=n;i++)cin>>a[i]; for(int i=1;i<=n;i++)sumv[i]=sumv[i-1]+a[i]; memset(f,-0x3f,sizeof(f)); f[0]=0; for(int t=1;t<=k;t++){ vector<long long> g(n+1,LLONG_MIN); for(int l=t;l<=n;l++)g[l]=max(g[l-1],f[t-1][l-1]); for(int r=t;r<=n;r++)f[r]=max(f[r],g[r]+sumv[r]*t); } cout<<f[n]<<'\n'; return 0; } ``` 这段程序利用了滚动数组优化空间复杂度,同时保持时间效率不变[^3]。 --- ##### **其他常见问题** 针对更复杂的路径覆盖类问题(如 PXXXX),我们往往需要结合一维或多维动态规划模型加以处理。例如,在某些场景下,我们可以设定 dp 数组记录到达某一点所需最小代价或者最大收益等指标[^4]。 --- ### 总结 以上展示了如何运用动态规划技巧去应对不同类型的算法挑战。无论是基础还是高级应用场合,合理选取合适的数据结构配合清晰的状态转换关系都是成功解决问题的关键所在。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值