POJ 3268 Silver Cow Party

本文介绍了一种利用最短路径算法解决农场聚会中奶牛行走时间问题的方法。通过两次运行Dijkstra算法,分别计算各农场到聚会地点及返回的最短时间,并以此找出所有奶牛往返所需最长总时间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Silver Cow Party
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions:25707 Accepted: 11729

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: NM, and X 
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: AiBi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

路是单向,从i到j在回来,即是从j到i,然后将道路反向,
再求一次j到i,两者相加即可。
代码:

#include<cstdio>
#include<string.h>
#include<algorithm>
#include<vector>
#include<queue>
#define INF 0x3f3f3f3f
int n,m,st,d[1003];
bool vis[1003];
using namespace std;
struct node
{
    int to,cost;
};
vector<node>go[1003],goback[1003];
struct node2
{
    int dec,len;
};
bool operator<(node2 a,node2 b)
{
    return a.len>b.len;
}
priority_queue<node2>P;
void Dija(vector<node> *rode)
{
    d[st]=0;
    node2 r;
    r.dec=st,r.len=0;
    P.push(r);
    while(!P.empty())
    {
        r=P.top();
        P.pop();
        int v=r.dec;
        if(d[v]<r.len)continue;
        vis[v]=1;
        int L=rode[v].size();
        for(int i=0; i<L; i++)
        {
            node e=rode[v][i];
            if(d[e.to]>d[v]+e.cost)
            {
                d[e.to]=d[v]+e.cost;
                node2 u;
                u.dec=e.to;
                u.len=d[e.to];
                P.push(u);
            }
        }
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&st);
    int i,j;
    memset(d,INF,sizeof(d));
    memset(vis,0,sizeof(vis));
    for(i=1; i<=m; i++)
    {
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        node r;
        r.to=y;
        r.cost=z;
        go[x].push_back(r);
        r.to=x;
        goback[y].push_back(r);
    }
    Dija(go);
    int d1[1003];
    for(i=1; i<=n; i++)
        d1[i]=d[i];
    memset(d,INF,sizeof(d));
    memset(vis,0,sizeof(vis));
    Dija(goback);
    int ma=0;
    for(i=1; i<=n; i++)
    {
        d1[i]+=d[i];
        ma=max(ma,d1[i]);
    }
    printf("%d\n",ma);
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值