Description
平面内有一个凸n边形,以每秒v个单位的速度向左移动。
有一个行人在(0,0)处,要走到(0,w),行人可以任意调整自己的速度,但是最大速度不超过u。
求行人在不碰到凸n边形的情况下到达目的地的最短时间。
Solution
我们可以发现,对于每个点,如果我们让这个人走到这个点,然后再以最大速度走到终点,这样的时间的最大值就是我们要求的答案(影响最大的点只有一个)
但是,有两种特殊情况,所有点都在y轴左/右边,特判一下就好了。
CF的环境有些奇怪,double需要赋初值~
Code
#include <cstdio>
#include <cstring>
#include <algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
typedef double db;
db w,v,u,x,y;
int n;
int main() {
scanf("%d%lf%lf%lf",&n,&w,&v,&u);
db ans=0;bool flag1=0,flag2=0;
fo(i,1,n) {
scanf("%lf%lf",&x,&y);
if (x*1.0/v>y*1.0/u) flag1=1;
if (x*1.0/v<y*1.0/u) flag2=1;
ans=max(ans,x*1.0/v+(w-y)*1.0/u);
}
if (flag1&&flag2) printf("%.7lf\n",ans);
else printf("%.7lf\n",w*1.0/u);
}