SVM聚合智能

SVM Aggregating Intelligence

Description:

SVM Aggregating Intelligence is a set of methodologies and approaches to collect computing intellect of multiple SVMs through construction of SVM based multi-core complex system to which single SVM methodologies and approaches are ineffective or infeasible. In this field, we developed early several SVM modular aggregations, such as random SVM mixture expert system, SVM Ensemble; ordered SVM aggregation system, SVM Classification Trees (SVMT); SVMT association rule mining system rSVMT, and personalized transductive learning SVMT, ptSVMT.

Figure:

tl_files/research_pic/svmtree1.pngtl_files/research_pic/svmtree2.png

    Related articles:

    • S. Pang, D. Kim and S.Y. Bang, "Face membership authentication using SVM classification tree generated by membership-based LLE data partition," IEEE Transactions on Neural Networks, vol. 16, no. 2, pp. 436 -446, 2005.|PDF|Bibtxt|
    • S. Pang, "Constructing SVM Multiple Tree for Face Membership Authentication," Biometric Authentication, vol. 3072, pp. 1-13, Springer Berlin / Heidelberg, 2004.|PDF|Bibtxt|
    • S. Pang, D. Kim and S.Y. Bang, "Membership authentication in the dynamic group by face classification using SVM ensemble," Pattern Recognition Letters, vol. 24, no. 1-3, pp. 215 - 225, 2003.|PDF|Bibtxt|
    • H. C. Kim, S. Pang, H. M. Je, D. Kim and S. Y. Bang, "Constructing support vector machine ensemble," Pattern Recognition, vol. 36, no. 12, pp. 2757 - 2767, 2003.|PDF|Bibtxt|
    • S. Pang, T. Ban, Y. Kadobayashi and N. Kasabov, "Personalized mode transductive spanning SVM classification tree," Information Sciences, vol. 181, no. 11, pp. 2071 - 2085, 2011.|PDF|Bibtxt|
    • S. Pang and N. Kasabov, "Encoding and decoding the knowledge of association rules over SVM classification trees," Knowledge and Information Systems, vol. 19, no. 1, pp. 79-105, 2009.|PDF|Bibtxt|  
    来源:http://www.dmli.info/index.php/svm-aggregating-intelligence.html
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值