高级编程技术作业_19

本博客通过计算四个不同数据集的均值、方差及相关系数,并进行线性回归分析,揭示了尽管统计数据相似,但数据分布却可能截然不同的现象。使用Seaborn可视化了所有数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

%matplotlib inline

import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

Anscombe’s quartet

Anscombe’s quartet comprises of four datasets, and is rather famous. Why? You’ll find out in this exercise.

In [4]:

anascombe = pd.read_csv('data/anscombe.csv')
anascombe.head()

Out [4]:

dataset x   y
0   I   10  8.04
1   I   8   6.95
2   I   13  7.58
3   I   9   8.81
4   I   11  8.33

Part 1

For each of the four datasets…

  • Compute the mean and variance of both x and y
  • Compute the correlation coefficient between x and y
  • Compute the linear regression line: y=β0+β1x+ϵ (hint: use statsmodels and look at the Statsmodels notebook)

In [5]:

database1 = anascombe[anascombe['dataset']=='I']
database2 = anascombe[anascombe['dataset']=='II']
database3 = anascombe[anascombe['dataset']=='III']
database4 = anascombe[anascombe['dataset']=='IV']

# 均值和方差
# or anascombe.loc[anascombe["dataset"]=='I'].x.mean()
print("datasetI:\nmean of x:",database1.x.mean()," mean of y:",database1.y.mean())
print("variance of x:",database1.x.var()," variance of y:",database1.y.var())

print("datasetII:\nmean of x:",database2.x.mean()," mean of y:",database2.y.mean())
print("variance of x:",database2.x.var()," variance of y:",database2.y.var())

print("datasetIII:\nmean of x:",database3.x.mean()," mean of y:",database3.y.mean())
print("variance of x:",database3.x.var()," variance of y:",database3.y.var())

print("datasetIV:\nmean of x:",database4.x.mean()," mean of y:",database4.y.mean())
print("variance of x:",database4.x.var()," variance of y:",database4.y.var())

#相关系数
print("\ncorrelation coefficient between x and y:",anascombe.x.corr(anascombe.y))

#线性回归
n = len(anascombe)
is_train = np.random.rand(n) < 0.7
train = anascombe[is_train].reset_index(drop=True)
test = anascombe[~is_train].reset_index(drop=True)
lin_model = smf.ols("y ~ x", train).fit()
print(lin_model.summary())

Out [5]:

datasetI:
mean of x: 9.0  mean of y: 7.500909090909093
variance of x: 11.0  variance of y: 4.127269090909091
datasetII:
mean of x: 9.0  mean of y: 7.50090909090909
variance of x: 11.0  variance of y: 4.127629090909091
datasetIII:
mean of x: 9.0  mean of y: 7.5
variance of x: 11.0  variance of y: 4.12262
datasetIV:
mean of x: 9.0  mean of y: 7.500909090909091
variance of x: 11.0  variance of y: 4.123249090909091

correlation coefficient between x and y: 0.81636624276147

                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.636
Model:                            OLS   Adj. R-squared:                  0.623
Method:                 Least Squares   F-statistic:                     52.34
Date:                Fri, 08 Jun 2018   Prob (F-statistic):           4.72e-08
Time:                        19:25:11   Log-Likelihood:                -50.810
No. Observations:                  32   AIC:                             105.6
Df Residuals:                      30   BIC:                             108.6
Df Model:                           1
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      3.2531      0.666      4.887      0.000       1.894       4.613
x              0.4843      0.067      7.234      0.000       0.348       0.621
==============================================================================
Omnibus:                        1.104   Durbin-Watson:                   1.995
Prob(Omnibus):                  0.576   Jarque-Bera (JB):                0.593
Skew:                           0.332   Prob(JB):                        0.743
Kurtosis:                       3.054   Cond. No.                         30.9
==============================================================================

Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

In [6]:

g = sns.FacetGrid(anascombe,col = 'dataset')
g = g.map(plt.scatter, "x", "y")
plt.show()

Out [6]:

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值