TCP 协议详解

本文深入解析TCP协议的功能、TCP/IP协议分层结构、TCP报文格式及可靠连接机制。通过三次握手与四次分手的经典场景,阐述连接建立与断开的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TCP 协议详解

在笔者以前的工程中,用过 socket 套接字实现过多进程通信的程序,也用过 Node.js + socket.io + express 构建过 B/S 软件架构,但对最基础的 TCP 协议其实并没有透彻了解。适逢笔者最近找工作,为防面试时被面试官问到相关问题惨遭打脸,笔者决定总结一下 TCP 协议的相关知识点。

参考网址:
《TCP 协议详解》
《简析TCP的三次握手与四次分手》
《TCP协议中的三次握手和四次挥手(图解)》
《TCP通信的三次握手和四次撒手的详细流程(顿悟) 》
《TCP建立连接的三次握手(例题)》

一、TCP 协议功能简述

在世界上各地,各种各样的电脑运行着各自不同的操作系统为大家服务,这些电脑在表达同一种信息的时候所使用的方法是千差万别。就好像圣经中上帝打乱了各地人的口音,让他们无法合作一样。计算机使用者意识到,计算机只是单兵作战并不会发挥太大的作用。只有把它们联合起来,电脑才会发挥出它最大的潜力。于是人们就想方设法的用电线把电脑连接到了一起。但是简单的连到一起是远远不够的,就好像语言不同的两个人互相见了面,完全不能交流信息。因而他们需要定义一些共通的东西来进行交流,TCP / IP 就是为此而生。
TCP / IP 不是一个协议,而是一个协议族的统称。里面包括了 IP 协议,IMCP 协议,TCP 协议,以及我们更加熟悉的 http、ftp、pop3 协议等等。电脑有了这些,就好像学会了外语一样,就可以和其他的计算机终端做自由的交流了。


# 二、TCP / IP 协议分层 网络结构有两种分层模式:OSI 参考模型与 TCP / IP 参考模型,两者虽然不同,但却有很多共通之处,如下所示:

TCP / IP 协议按照层次由上到下,层层包装。TCP / IP 模型各层之间的基本作用如下:

  • 应用层:向用户提供一组常用的应用程序,如电子邮件(简单邮件传输协议,SMTP),文件传输访问(文件传输协议,FTP),远程登录(TELNET)等。
    • 远程登录 TELNET:使用 TELNET 协议,提供在网络其它主机上注册的接口,TELNET 会话提供了基于字符的虚拟终端;
    • 文件传输访问 FTP:使用 FTP 协议来提供网络内机器间的文件拷贝功能;
  • 传输层:即图中的运输层,负责提供应用程序间的通信。其功能包括:
    • 格式化信息流;
    • 提供可靠传输。为实现后者,传输层协议规定接收端必须发回确认,并且假如分组丢失,必须重新发送。
  • 网络层:负责相邻计算机之间的通信。功能主要包括三方面:
    • 处理来自传输层的分组发送请求:收到请求之后,将分组装入 IP 数据报,填充报头,选择去往信宿机的路径,然后将数据报发往适当的网络接口;
    • 处理输入数据报:首先检查其合法性,然后进行寻址:如果该数据包已经到达信宿机,则去掉报头,将剩下一部分交给适当的传输协议;如果该数据包尚未到达信宿机,则转发该数据报;
    • 处理路径、流控、拥塞等问题;
  • 网络接口层:这是 TCP / IP 的最底层,负责接收 IP 数据报并通过网络发送数据报,或者从网络上接收物理帧,抽出 IP 数据报,交给 IP 层;

三、TCP 的可靠连接

TCP 用于应用程序之间的可靠通信。
当应用程序希望通过 TCP 与另一个应用程序通信时,它会发送一个通信请求,这个请求必须被送到一个一个确切的地址。在双方“握手”之后,TCP 将在两个应用程序之间建立一个全双工 (Full-Duplex) 的通信,这个全双工通信将占用两个计算机之间的通信线路,直到它被一方(或双方)关闭为止。
:UDP 和 TCP 很相似,当时更简单,同时可靠性低于 TCP。


# 四、TCP 报文格式 TCP 是一个协议,那这个协议是如何定义的,它的数据格式是什么样子的呢?要进行更深层次的剖析,就需要了解,甚至是熟记 TCP 协议中每个字段的含义。下图就是 TCP 协议的报文格式,由于报文格式是理解其它内容的基础,十分重要,所以将对每个字段的信息详细说明:
  • Source Port, Destination Port(源端口号,目的端口号):分别占用 16 位,用于区别主机中的不同进程;由于 IP 地址用来区分不同主机,所以源端口号、目的端口号与 IP 首部中的源 IP 地址和目的 IP 地址,技能确定唯一的一个 TCP 连接;
  • Sequence Number(发送序号):32 位数据,用来标识从 TCP 发送端向 TCP 接收端发送的数据字节流,它表示在这个报文段中的第一个数据字节在数据流中的序号,主要用来解决网络报乱序问题;
  • Acknowledgment Number(确认序号):占用 32 位,由接收端的计算机使用,将分段的报文重组成最初形式;如果设置了控制位 ACK = 1,则这个值表示下一个准备接受的包的序列码;
  • Offset(数据偏移量):占用 4 位,给出首部中 32bit 字的数目,需要这个值是因为任选字段的长度是可变的(如果没有任选字段,正常的长度是 20 字节);
  • Reserved(保留位):占用 6 位,且必须是 0,为了将来定义新的用途而保留;
  • TCP Flags(TCP 标志位):用于标志 TCP 的某些状态,它们中的多个可同时被设置为 1,主要用于操控 TCP 的状态机,6 个标志位依次为 URG, ACK, PSH, RST, SYN, FIN。每个标志位的意义如下:
    • URG:紧急标志 (Urgent),该标志表示 TCP 包的紧急指针域有效(后面将会说到紧急指针域的内容),用来保证 TCP 连接不被中断,并督促中间层设备要尽快处理这些数据;
    • ACK:确认标志 (Acknowledge),该标志表示应答域有效,就是说前面提到的 TCP 应答信号会包含在 TCP 数据包中;ACK 可以由两个取值( 0/1 ):应答域有效为1,反之为0;
    • PSH:推标志 (Push),表示 Push 操作,即在数据报到达接收端以后,立即传送给应用程序,而不是在缓冲区中排队;
    • RST:复位标志 (Reset),用来复位那些产生错误的连接,也被用来拒绝错误和非法的数据报;
    • SYN:同步标志 (Synchronize),用来建立连接。该标志经常与 ACK 标志搭配使用:
      • 连接请求时,SYN = 1, ACK = 0;
      • 连接被响应时,SYN = 1, ACK = 1;
      • SYN 的数据报经常被用来进行端口扫描,扫描这发送一个只有 SYN 的数据包,此时若对方主机相应了一个数据包回来,就表明这台主机存在该端口;
      • 这种扫描方式只是进行 TCP 三次握手的第一次握手,因此这种扫描的成功表示被扫描的机器并不安全,一台安全的主机将会强制要求一个连接严格的进行 TCP 三次握手;
    • FIN:结束标志 (Finish),表示发送端已经达到数据末尾,也就是说双方的数据传送完成,没有数据可以传送了,发送FIN标志位的TCP数据包后,连接将被断开。这个标志的数据包也经常被用于进行端口扫描;
  • Window(窗口大小):用来进行流量控制(问题比较复杂,本博文中并不总结);

五、TCP 的三次握手

## 1. 三次握手详解 TCP 是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接。在 TCP / IP 协议中,TCP 协议提供可靠的连接服务,连接是通过三次握手进行初始化的。 三次握手的目的是同步连接双方的序列号和确认号并交换 TCP 窗口大小信息。这就是面试中经常会被问到的 TCP 三次握手。解释如下图:
  • 第一次握手:建立连接。首先客户端发送连接请求报文段,将同步位 SYN 置为 1,发送序号 (Sequence Number) 置为 x;然后客户端进入 SYN_SEND 状态,等待服务器确认;
  • 第二次握手:服务器收到 SYN 报文段。服务器收到了客户端发送的 SYN 报文段,对该 SYN 报文段进行确认,设置确认标志 Acknowlegde Number 为 x + 1(即发送序号 Sequence Number + 1);同时服务器自己还要发送 SYN 请求信息,将 SYN 置为 1,发送序号 Sequence Number 为 y;服务器端将上述所有信息放到一个报文段(即 SYN + ACK 报文段)中,一并发给客户端;此时服务器进入 SYN_RECV 状态;
  • 第三次握手:客户端收到服务器的 SYN + ACK 报文段,然后将确认序号 Acknowledgment Number 设置为 y+1,向服务器发送 ACK 报文段,这个报文段发送完毕后,客户端与服务器端都进入了 ESTABLISHED 状态,此时便完成了 TCP 三次握手;

完成了三次握手,客户端和服务器端就可以开始传送数据。以上就是TCP三次握手的总体介绍。

2. 为什么要进行三次握手?

既然总结了TCP的三次握手,那为什么非要三次呢?怎么觉得两次就可以完成了。那TCP为什么非要进行三次连接呢?在谢希仁的《计算机网络》中是这样说的:

为了防止已失效的连接请求报文段突然又传送到了服务端,因而产生错误。

同时,书中举了一个例子如下:

“已失效的连接请求报文段”的产生在这样一种情况下:客户端发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误到连接释放以后的某个时间才到达服务器。本来这是一个早已失效的报文段,但服务器收到此失效的连接请求报文段后,就误认为是客户端再次发出的一个新的连接请求。于是就向客户端发出确认报文段,同意建立连接。假设不采用“三次握手”,那么只要服务器发出确认,新的连接就建立了。由于现在客户端并没有发出建立连接的请求,因此不会理睬服务器的确认,也不会向服务器发送数据。但服务器却以为新的运输连接已经建立,并一直等待客户端发来数据。这样,服务器的很多资源就白白浪费掉了。采用“三次握手”的办法可以防止上述现象发生。例如刚才那种情况,客户端不会向服务器的确认发出确认。服务器由于收不到确认,就知道客户端并没有要求建立连接。”

这样讲就很明白了,防止了服务器端的一直等待而浪费资源。


# 六、TCP 的三次握手实例讲解 例1:实例如下: > IP 192.168.1.116.3337 –> 192.168.1.123.7788: S 3626544836:3626544836 > IP 192.168.1.123.7788 –> 192.168.1.116.3337: S 1739326486:1739326486 ack 3626544837 > IP 192.168.1.116.3337 –> 192.168.1.123.7788: ack 1739326487,ack 1 - 第一次握手:192.168.1.116 发送位码 SYN = 1,随机产生发送序列号Sequence Number = 3626544836 的数据包,并发送到 IP 为 192.168.1.123 的地址,192.168.1.123 由 SYN = 1 知道 192.168.1.116 要求建立联机; - 第二次握手:192.168.1.123 收到请求后要确认联机信息,向 192.168.1.116 确认序列号 (Acknowledge Number) ACK = 3626544837, SYN = 1, ACK = 1,随机产生发送序列号seq = 1739326486 的包; - 第三次握手:192.168.1.116 收到后检查第二次握手中收到的确认序列号 (ACK = 3626544837) 是否正确,即是否等于第一次发送的发送序列号 Sequence Number + 1 (3626544836 + 1),以及位码 ACK 是否为 1,若正确,192.168.1.116 会再发送确认序列号 Acknowledge Number = 1739326487, ACK = 1,192.168.1.123 收到后确认 seq = seq + 1, ack = 1,则连接建立成功。 用网络抓包分析工具 WireShark 可以分析上述过程如下面两图所示:

第一次握手的标志位如下图所示:

我们看到标志位中只有一个同步位为 1,也就是说此时在做请求 (SYN);

第二次握手的标志位如下图所示:

我们可以看到,标志位里只有确认位和同步位,也就是正在做应答(SYN + ACK);

第三次握手的标志位如下图所示:

我们可以看到,标志位里只有一个确认位,也就是正在做再次确认 (ACK);

故可以得知:一次完整的三次握手,就是请求 -> 应答 -> 再次确认;

例2,有题如下:

TCP建立连接的过程采用三次握手,已知第三次握手报文的发送序列号为 1000,确认序列号为 2000,请问第二次握手报文的发送序列号和确认序列号分别为
A. 1999,999
B. 1999,1000
C. 999,2000
D. 999,1999

答案应该选 B:发送序列 (Sequence Number)是自己发送报文的序列号,当前发送序列号是上一次发送序列号 +1,确认序列号 (Acknowledge Number) 是从对方接收到的发送序列号 +1。第三次握手发送的序列号(即 seq number = x+1)是 1000,那说明第一次握手发送的序列号(即seq number = x)是 999。
注意:这里是握手,因此,第二次握手的确认序列号是 1000,即第二次握手的确认序列号是第一次握手时从对方接收到的发送序列号(即上文中推出来的999)+1。第三次握手发送的确认号是 2000,说明第二次握手的发送序列号是 1999。所以选 B。

七、TCP 的四次分手

1. 四次分手详解

在客户端和服务器通过三次握手建立了TCP连接以后,当数据传送完毕,肯定总要断开 TCP 连接。那对于 TCP 的断开连接,这里就有了对应的“四次分手”。

  • 第一次分手:主机 1(可以是客户端,也可以是服务器端),设置发送序列号 (Sequence Number) 和确认序列号 (Acknowledgment Number),向主机 2 发送一个 FIN 报文段;这时候,主机 1 进入 FIN_WAIT_1 状态;这表示主机 1 没有数据要发送给主机 2 了;
  • 第二次分手:主机 2(收到了主机 1 发送的 FIN 报文段,向主机 1 回一个 ACK 报文段,此时确认序列号 (Acknowledge Number) 设置为第一次分手阶段中的发送序列号 (Sequence Number) 的值 + 1;主机 1 进入 FIN_WAIT_2 状态;主机 2 告诉主机 1:“我同意你的关闭请求”;
  • 第三次分手:主机 2 向主机 1 发送 FIN 报文段,请求关闭连接,同时主机 2 进入 LAST_ACK 状态;
  • 第四次分手:主机 1 收到主机 2 发送的 FIN 报文段,然后主机 1 进入 TIME_WAIT 状态;主机 2 收到主机 1 的 ACK 报文段之后,就关闭连接;此时主机 1 等待 2MSL(最大报文段生存时间)后依然没有收到回复,则证明服务器端已经正常关闭,这时候主机 1 也可以关闭连接了。

这次 TCP 的四次分手就这么完成了。

2. 为什么要四次分手?

四次分手是为何呢?如果要正确的理解四次分手的原理,就需要了解四次分手过程中的状态变化。

  • FIN_WAIT_1(主动方):该状态需要好好解释一下。其实 FIN_WAIT_1 和 FIN_WAIT_2 状态的真正含义,都是表示等待对方的 FIN 报文,而这两种状态的区别是:FIN_WAIT_1 状态实际上是 socket 在 ESTABLISHED 状态时,它想主动关闭连接,向对方发送了 FIN 报文,此时该 socket 进入到了 FIN_WAIT_1 状态;而当对方回应 ACK 报文后,则进入到 FIN_WAIT_2 状态,当然在实际的正常情况下,无论对方何种情况下,都应该马上回应 ACK 报文,所以 FIN_WAIT_1 状态一般都比较难见到,而 FIN_WAIT_2 状态还可以时常用 netstat 看到;
  • FIN_WAIT_2(主动方):上面已经详细解释了这种状态,实际上 FIN_WAIT_2 状态下的 socket 表示半连接,即由一方要求关闭连接,但同时还告诉对方,我暂时还有一点数据需要传送给你 (ACK),稍后再关闭连接;
  • CLOSE_WAIT(被动方):这种状态含义其实是表示等待关闭。当对方关闭一个 socket 后,对方会发送一个 socket 给自己,此时系统必然会回应一个 ACK 报文给对方,此时进入到 CLOSE_WAIT 状态。接下来,实际上你真正需要考虑的事情是查看你是否还有数据发送给对方。如果没有的话,就可以关闭这个 socket,发送 FIN 报文给对方,即关闭了连接。所以在 CLOSE_WAIT 状态下,需要完成的事情是等待你去关闭连接;
  • LAST_ACK(被动方):被动关闭一方发送 FIN 报文后,最后等待对方的 ACK 报文;当收到 ACK 报文后,也就可以进入到 CLOSED 可用状态了;
  • TIME_WAIT(主动方):表示收到了对方的 FIN 报文,并发送出了 ACK 报文,就等 2MSL 后就可回到 CLOSED 可用状态了。如果 FIN_WAIT_1 状态下,收到了对方同时带 FIN 标志和 ACK 标志的报文时,就可以直接进入到 TIME_WAIT 状态,而无须经过 FIN_WAIT_2 状态;
  • CLOSED:表示连接中断;

八、后记

基本上介绍到这里就结束了,但 TCP 协议还是比较复杂的,需要好好理解。
希望这次总结可以让笔者对 TCP 协议更加深入了解,而且能够在以后的某不知何时何地的面试中过关斩将吧~

CruiseYoung提供的带有详细书签的电子书籍目录 http://blog.youkuaiyun.com/fksec/article/details/7888251 该资料是《TCP/IP详解 卷1:协议》的源代码 对应的书籍资料见: TCP/IP详解 卷1:协议(09年度畅销榜TOP50)(08年度畅销榜TOP50) http://download.youkuaiyun.com/detail/fksec/4657587 基本信息 原书名: TCP/IP Illustracted Volume 1:The Protocols 原出版社: Addison Wesley/Pearson 作者: W.Richard Stevens 译者: 范建华等 丛书名: 计算机科学丛书 出版社:机械工业出版社 ISBN:7111075668 上架时间:2000-7-1 出版日期:2000 年4月 页码:423 版次:1-1 所属分类:计算机 > 计算机网络 > 网络协议 > TCP/IP 教材 > 研究生/本科/专科教材 > 工学 > 计算机 教材 > 计算机教材 > 本科/研究生 > 计算机专业教材 > 计算机专业课程 > 计算机网络 编辑推荐   09年度畅销榜TOP50    08年度畅销榜TOP50 作译者 作者: W.Richard Stevens 国际知名的Unix和网络专家,《TCP/IP 详解》(三卷本)作者   W.Richard Stevens(1951-1999),是国际知名的Unix和网络专家;受人尊敬的计算机图书作家;同时他还是广受欢迎的 教师和顾问。Stevens先生1951年生于赞比亚,他的家庭曾多次搬迁,最终定居于南非。早年,他就读于美国弗吉尼亚州的费什本军事学校,后获得密歇根大学学士、亚利桑那大学系统工程硕 士和博士学位。他曾就职于基特峰国家天文台,从事计算机编程;还曾在康涅狄格州纽黑文市的健康系统国际公司任主管计算机服务的副总裁。Stevens先生不幸病逝于1999年9月1日,他的离 去是计算机界的巨大损失。 目录 封面 -1 第1章 概述 1 1.1 引言 1 1.2 分层 1 1.3 TCP/IP的分层 4 1.4 互联网的地址 5 1.5 域名系统 6 1.6 封装 6 1.7 分用 8 1.8 客户-服务器模型 8 1.9 端口号 9 1.10 标准化过程 10 1.11 RFC 10 1.12 标准的简单服务 11 1.13 互联网 12 1.14 实现 12 1.15 应用编程接口 12 1.16 测试网络 13 1.17 小结 13 第2章 链路层 15 2.1 引言 15 2.2 以太网和IEEE 802封装 15 2.3 尾部封装 17 2.4 SLIP:串行线路IP 17 2.5 压缩的SLIP 18 2.6 PPP:点对点协议 18 2.7 环回接口 20 2.8 最大传输单元MTU 21 2.9 路径MTU 21 2.10 串行线路吞吐量计算 21 2.11 小结 22 第3章 IP:网际协议 24 3.1 引言 24 3.2 IP首部 24 3.3 IP路由选择 27 3.4 子网寻址 30 3.5 子网掩码 32 3.6 特殊情况的IP地址 33 3.7 一个子网的例子 33 3.8 ifconfig命令 35 3.9 netstat命令 36 3.10 IP的未来 36 3.11 小结 37 第4章 ARP:地址解析协议 38 4.1 引言 38 4.2 一个例子 38 4.3 ARP高速缓存 40 4.4 ARP的分组格式 40 4.5 ARP举例 41 4.5.1 一般的例子 41 4.5.2 对不存在主机的ARP请求 42 4.5.3 ARP高速缓存超时设置 43 4.6 ARP代理 43 4.7 免费ARP 45 4.8 arp命令 45 4.9 小结 46 第5章 RARP:逆地址解析协议 47 5.1 引言 47 5.2 RARP的分组格式 47 5.3 RARP举例 47 5.4 RARP服务器的设计 48 5.4.1 作为用户进程的RARP服务器 49 5.4.2 每个网络有多个RARP服务器 49 5.5 小结 49 第6章 ICMP:Internet控制报文协议 50 6.1 引言 50 6.2 ICMP报文的类型 50 6.3 ICMP地址掩码请求与应答 52 6.4 ICMP时间戳请求与应答 53 6.4.1 举例 54 6.4.2 另一种方法 55 6.5 ICMP端口不可达差错 56 6.6 ICMP报文的4.4BSD处理 59 6.7 小结 60 第7章 Ping程序 61 7.1 引言 61 7.2 Ping程序 61 7.2.1 LAN输出 62 7.2.2 WAN输出 63 7.2.3 线路SLIP链接 64 7.2.4 拨号SLIP链路 65 7.3 IP记录路由选项 65 7.3.1 通常的例子 66 7.3.2 异常的输出 68 7.4 IP时间戳选项 69 7.5 小结 70 第8章 Traceroute程序 71 8.1 引言 71 8.2 Traceroute 程序的操作 71 8.3 局域网输出 72 8.4 广域网输出 75 8.5 IP源站选路选项 76 8.5.1 宽松的源站选路的traceroute程序示例 78 8.5.2 严格的源站选路的traceroute程序示例 79 8.5.3 宽松的源站选路traceroute程序的往返路由 80 8.6 小结 81 第9章 IP选路 83 9.1 引言 83 9.2 选路的原理 84 9.2.1 简单路由表 84 9.2.2 初始化路由表 86 9.2.3 较复杂的路由表 87 9.2.4 没有到达目的地的路由 87 9.3 ICMP主机与网络不可达差错 88 9.4 转发或不转发 89 9.5 ICMP重定向差错 89 9.5.1 一个例子 90 9.5.2 更多的细节 91 9.6 ICMP路由器发现报文 92 9.6.1 路由器操作 93 9.6.2 主机操作 93 9.6.3 实现 93 9.7 小结 94 第10章 动态选路协议 95 10.1 引言 95 10.2 动态选路 95 10.3 Unix选路守护程序 96 10.4 RIP:选路信息协议 96 10.4.1 报文格式 96 10.4.2 正常运行 97 10.4.3 度量 98 10.4.4 问题 98 10.4.5 举例 98 10.4.6 另一个例子 100 10.5 RIP版本2 102 10.6 OSPF:开放最短路径优先 102 10.7 BGP:边界网关协议 103 10.8 CIDR:无类型域间选路 104 10.9 小结 105 第11章 UDP:用户数据报协议 107 11.1 引言 107 11.2 UDP首部 107 11.3 UDP检验和 108 11.3.1 tcpdump输出 109 11.3.2 一些统计结果 109 11.4 一个简单的例子 110 11.5 IP分片 111 11.6 ICMP不可达差错(需要分片) 113 11.7 用Traceroute确定路径MTU 114 11.8 采用UDP的路径MTU发现 116 11.9 UDP和ARP之间的交互作用 118 11.10 最大UDP数据报长度 119 11.11 ICMP源站抑制差错 120 11.12 UDP服务器的设计 122 11.12.1 客户IP地址及端口号 122 11.12.2 目标IP地址 122 11.12.3 UDP输入队列 122 11.12.4 限制本地IP地址 124 11.12.5 限制远端IP地址 125 11.12.6 每个端口有多个接收者 125 11.13 小结 126 第12章 广播和多播 128 12.1 引言 128 12.2 广播 129 12.2.1 受限的广播 129 12.2.2 指向网络的广播 129 12.2.3 指向子网的广播 129 12.2.4 指向所有子网的广播 130 12.3 广播的例子 130 12.4 多播 132 12.4.1 多播组地址 133 12.4.2 多播组地址到以太网地址的转换 133 12.4.3 FDDI和令牌环网络中的多播 134 12.5 小结 134 第13章 IGMP:Internet组管理协议 136 13.1 引言 136 13.2 IGMP报文 136 13.3 IGMP协议 136 13.3.1 加入一个多播组 136 13.3.2 IGMP报告和查询 137 13.3.3 实现细节 137 13.3.4 生存时间字段 138 13.3.5 所有主机组 138 13.4 一个例子 138 13.5 小结 141 第14章 DNS:域名系统 142 14.1 引言 142 14.2 DNS基础 142 14.3 DNS的报文格式 144 14.3.1 DNS查询报文中的问题部分 146 14.3.2 DNS响应报文中的资源记录部分 147 14.4 一个简单的例子 147 14.5 指针查询 150 14.5.1 举例 151 14.5.2 主机名检查 151 14.6 资源记录 152 14.7 高速缓存 153 14.8 用UDP还是用TCP 156 14.9 另一个例子 156 14.10 小结 157 第15章 TFTP:简单文件传送协议 159 15.1 引言 159 15.2 协议 159 15.3 一个例子 160 15.4 安全性 161 15.5 小结 162 第16章 BOOTP: 引导程序协议 163 16.1 引言 163 16.2 BOOTP的分组格式 163 16.3 一个例子 164 16.4 BOOTP服务器的设计 165 16.5 BOOTP穿越路由器 167 16.6 特定厂商信息 167 16.7 小结 168 第17章 TCP:传输控制协议 170 17.1 引言 170 17.2 TCP的服务 170 17.3 TCP的首部 171 17.4 小结 173 第18章 TCP连接的建立与终止 174 18.1 引言 174 18.2 连接的建立与终止 174 18.2.1 tcpdump的输出 174 18.2.2 时间系列 175 18.2.3 建立连接协议 175 18.2.4 连接终止协议 177 18.2.5 正常的tcpdump输出 177 18.3 连接建立的超时 178 18.3.1 第一次超时时间 178 18.3.2 服务类型字段 179 18.4 最大报文段长度 179 18.5 TCP的半关闭 180 18.6 TCP的状态变迁图 182 18.6.1 2MSL等待状态 183 18.6.2 平静时间的概念 186 18.6.3 FIN_WAIT_2状态 186 18.7 复位报文段 186 18.7.1 到不存在的端口的连接请求 187 18.7.2 异常终止一个连接 187 18.7.3 检测半打开连接 188 18.8 同时打开 189 18.9 同时关闭 191 18.10 TCP选项 191 18.11 TCP服务器的设计 192 18.11.1 TCP服务器端口号 193 18.11.2 限定的本地IP地址 194 18.11.3 限定的远端IP地址 195 18.11.4 呼入连接请求队列 195 18.12 小结 197 第19章 TCP的交互数据流 200 19.1 引言 200 19.2 交互式输入 200 19.3 经受时延的确认 201 19.4 Nagle算法 203 19.4.1 关闭Nagle算法 204 19.4.2 一个例子 205 19.5 窗口大小通告 207 19.6 小结 208 第20章 TCP的成块数据流 209 20.1 引言 209 20.2 正常数据流 209 20.3 滑动窗口 212 20.4 窗口大小 214 20.5 PUSH标志 215 20.6 慢启动 216 20.7 成块数据的吞吐量 218 20.7.1 带宽时延乘积 220 20.7.2 拥塞 220 20.8 紧急方式 221 20.9 小结 224 第21章 TCP的超时与重传 226 21.1 引言 226 21.2 超时与重传的简单例子 226 21.3 往返时间测量 227 21.4 往返时间RTT的例子 229 21.4.1 往返时间RTT的测量 229 21.4.2 RTT估计器的计算 231 21.4.3 慢启动 233 21.5 拥塞举例 233 21.6 拥塞避免算法 235 21.7 快速重传与快速恢复算法 236 21.8 拥塞举例(续) 237 21.9 按每条路由进行度量 240 21.10 ICMP的差错 240 21.11 重新分组 243 21.12 小结 243 第22章 TCP的坚持定时器 245 22.1 引言 245 22.2 一个例子 245 22.3 糊涂窗口综合症 246 22.4 小结 250 第23章 TCP的保活定时器 251 23.1 引言 251 23.2 描述 252 23.3 保活举例 253 23.3.1 另一端崩溃 253 23.3.2 另一端崩溃并重新启动 254 23.3.3 另一端不可达 254 23.4 小结 255 第24章 TCP的未来和性能 256 24.1 引言 256 24.2 路径MTU发现 256 24.2.1 一个例子 257 24.2.2 大分组还是小分组 258 24.3 长肥管道 259 24.4 窗口扩大选项 262 24.5 时间戳选项 263 24.6 PAWS:防止回绕的序号 265 24.7 T/TCP:为事务用的TCP扩展 265 24.8 TCP的性能 267 24.9 小结 268 第25章 SNMP:简单网络管理协议 270 25.1 引言 270 25.2 协议 270 25.3 管理信息结构 272 25.4 对象标识符 274 25.5 管理信息库介绍 274 25.6 实例标识 276 25.6.1 简单变量 276 25.6.2 表格 276 25.6.3 字典式排序 277 25.7 一些简单的例子 277 25.7.1 简单变量 278 25.7.2 get-next操作 278 25.7.3 表格的访问 279 25.8 管理信息库(续) 279 25.8.1 system组 279 25.8.2 interface组 280 25.8.3 at组 281 25.8.4 ip组 282 25.8.5 icmp组 285 25.8.6 tcp组 285 25.9 其他一些例子 288 25.9.1 接口MTU 288 25.9.2 路由表 288 25.10 trap 290 25.11 ASN.1和BER 291 25.12 SNMPv2 292 25.13 小结 292 第26章 Telnet和Rlogin:远程登录 293 26.1 引言 293 26.2 Rlogin协议 294 26.2.1 应用进程的启动 295 26.2.2 流量控制 295 26.2.3 客户的中断键 296 26.2.4 窗口大小的改变 296 26.2.5 服务器到客户的命令 296 26.2.6 客户到服务器的命令 297 26.2.7 客户的转义符 298 26.3 Rlogin的例子 298 26.3.1 初始的客户-服务器协议 298 26.3.2 客户中断键 299 26.4 Telnet协议 302 26.4.1 NVT ASCII 302 26.4.2 Telnet命令 302 26.4.3 选项协商 303 26.4.4 子选项协商 304 26.4.5 半双工、一次一字符、一次一行或行方式 304 26.4.6 同步信号 306 26.4.7 客户的转义符 306 26.5 Telnet举例 306 26.5.1 单字符方式 306 26.5.2 行方式 310 26.5.3 一次一行方式(准行方式) 312 26.5.4 行方式:客户中断键 313 26.6 小结 314 第27章 FTP:文件传送协议 316 27.1 引言 316 27.2 FTP协议 316 27.2.1 数据表示 316 27.2.2 FTP命令 318 27.2.3 FTP应答 319 27.2.4 连接管理 320 27.3 FTP的例子 321 27.3.1 连接管理:临时数据端口 321 27.3.2 连接管理:默认数据端口 323 27.3.3 文本文件传输:NVT ASCII表示还是图像表示 325 27.3.4 异常中止一个文件的传输:Telnet同步信号 326 27.3.5 匿名FTP 329 27.3.6 来自一个未知IP地址的匿名FTP 330 27.4 小结 331 第28章 SMTP:简单邮件传送协议 332 28.1 引言 332 28.2 SMTP协议 332 28.2.1 简单例子 332 28.2.2 SMTP命令 334 28.2.3 信封、首部和正文 335 28.2.4 中继代理 335 28.2.5 NVT ASCII 337 28.2.6 重试间隔 337 28.3 SMTP的例子 337 28.3.1 MX记录:主机非直接连到Internet 337 28.3.2 MX记录:主机出故障 339 28.3.3 VRFY和EXPN命令 340 28.4 SMTP的未来 340 28.4.1 信封的变化:扩充的SMTP 341 28.4.2 首部变化:非ASCII字符 342 28.4.3 正文变化:通用Internet邮件扩充 343 28.5 小结 346 第29章 网络文件系统 347 29.1 引言 347 29.2 Sun远程过程调用 347 29.3 XDR:外部数据表示 349 29.4 端口映射器 349 29.5 NFS协议 351 29.5.1 文件句柄 353 29.5.2 安装协议 353 29.5.3 NFS过程 354 29.5.4 UDP还是TCP 355 29.5.5 TCP上的NFS 355 29.6 NFS实例 356 29.6.1 简单的例子:读一个文件 356 29.6.2 简单的例子:创建一个目录 357 29.6.3 无状态 358 29.6.4 例子:服务器崩溃 358 29.6.5 等幂过程 360 29.7 第3版的NFS 360 29.8 小结 361 第30章 其他的TCP/IP应用程序 363 30.1 引言 363 30.2 Finger协议 363 30.3 Whois协议 364 30.4 Archie、WAIS、Gopher、Veronica和WWW 366 30.4.1 Archie 366 30.4.2 WAIS 366 30.4.3 Gopher 366 30.4.4 Veronica 366 30.4.5 万维网WWW 367 30.5 X窗口系统 367 30.5.1 Xscope程序 368 30.5.2 LBX: 低带宽X 370 30.6 小结 370 附录A tcpdump程序 371 附录B 计算机时钟 376 附录C sock程序 378 附录D 部分习题的解答 381 附录E 配置选项 395 附录F 可以免费获得的源代码 406 参考文献 409 缩略语 420
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值