接着上一次的写。
先我们看看Ace_Message_Block中的locking_strategy锁到底作用在什么地方。
通过查看ACE的源代码,我们可以发现,在Ace_Message_Block中根本没有保存这把锁,而是直接传入内部的ACE_Data_Block中。在ACE_Data_Block中,保存了这把锁。ACE_Data_Block使用这把锁来控制duplicate和release时的同步。
可以这么说,如果你的程序中没有使用duplicate,那么,你在构造Ace_Message_Block的时候完全可以不用传递这个值,但如果你使用了duplicate,那么请一定加上这把锁。
由上面分析,我们可以认为,一个ACE_Data_Block对应着一把锁。实际上也应该这样理解,但是,ACE的作者却不是这么用的。
请看Ace_Message_Block的release和release_i()函数:
ACE_Message_Block
*
ACE_Message_Block::release (
void
)

{
ACE_TRACE ("ACE_Message_Block::release");

// We want to hold the data block in a temporary variable because we
// invoked "delete this;" at some point, so using this->data_block_
// could be a bad idea.
ACE_Data_Block *tmp = this->data_block ();

// This flag is set to 1 when we have to destroy the data_block
int destroy_dblock = 0;

ACE_Lock *lock = 0;

// Do we have a valid data block
if (this->data_block ())

{
// Grab the lock that belongs to my data block
lock = this->data_block ()->locking_strategy ();

// if we have a lock
if (lock != 0)

{
// One guard for all
ACE_GUARD_RETURN (ACE_Lock, ace_mon, *lock, 0);

// Call non-guarded release with <lock>
destroy_dblock = this->release_i (lock);
}
// This is the case when we have a valid data block but no lock
else
// Call non-guarded release with no lock
destroy_dblock = this->release_i (0);
}
else
// This is the case when we don't even have a valid data block
destroy_dblock = this->release_i (0);

if (destroy_dblock != 0)

{
ACE_Allocator *allocator = tmp->data_block_allocator ();
ACE_DES_FREE (tmp,
allocator->free,
ACE_Data_Block);
}

return 0;
}

int
ACE_Message_Block::release_i (ACE_Lock
*
lock
)

{
ACE_TRACE ("ACE_Message_Block::release_i");

// Free up all the continuation messages.
if (this->cont_)

{
ACE_Message_Block *mb = this->cont_;
ACE_Message_Block *tmp = 0;

do

{
tmp = mb;
mb = mb->cont_;
tmp->cont_ = 0;

ACE_Data_Block *db = tmp->data_block ();
if (tmp->release_i (lock) != 0)

{
ACE_Allocator *allocator = db->data_block_allocator ();
ACE_DES_FREE (db,
allocator->free,
ACE_Data_Block);
}
}
while (mb);

this->cont_ = 0;
}

int result = 0;

if (ACE_BIT_DISABLED (this->flags_,
ACE_Message_Block::DONT_DELETE) &&
this->data_block ())

{
if (this->data_block ()->release_no_delete (lock) == 0)
result = 1;
this->data_block_ = 0;
}

// We will now commit suicide: this object *must* have come from the
// allocator given.
if (this->message_block_allocator_ == 0)
delete this;
else

{
ACE_Allocator *allocator = this->message_block_allocator_;
ACE_DES_FREE (this,
allocator->free,
ACE_Message_Block);
}

return result;
}
看出什么问题来了不?
如果你有两个或者两个以上的Message_Block用cont()连接起来。在调用release时,ACE会用第一的Message_Block的锁去释放后面的Message_Block。这样,如果这几个Message_Block不时用的同一把锁的话,在Release的时候就会出错。
分析了上面的问题,现在我们讨论一下Message-Block的优化。
首先.ACE_Data_Block中的锁的优化。
很多人使用的时候都是传入的一把锁给所有的ACE_Data_Block,结果每一个ACE_Message_Block,在duplicate 或者release的时候都需要获取这把锁。优化的方案就是为ACE_Data_Block都传一把锁进去,当然,在Release的时候就必须注意,不要直接调用ACE_Message_Block的Release函数。
其次ACE_Allocator的优化。
ACE_Allocator中有一把锁用于维持链表的线程安全。当你整个应用程序就只有一个ACE_Allocator时,每一个池中的对象在分配或者释放的时候都需要获取这把锁,那么线程之间的碰撞时很激烈的,解决的办法也很简单。在程序中每一个ACE_Allocator不要太大,相当于再做一个ACE_Allocator的池。