数据挖掘领域的主要研究内容

数据挖掘是提取大量真实数据中的未知且有用信息的过程,涉及关联分析、聚类、分类、预测、时序模式和偏差分析等任务。关联分析寻找变量间的规律性,聚类将数据分组,分类构建预测模型,预测则用于未来数据的预测。数据挖掘流程包括问题定义、数据准备、挖掘、结果分析和知识运用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    数据挖掘(data mining)是从大量的、不完全的、有噪声的、模糊的、随机的数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。   

    与数据挖掘相近的同义词有数据融合、数据分析和决策支持等。这个定义包括好几层含义:数据源必须是真实的、大量的、含噪声的;发现的是用户感兴趣的知识;发现的知识要可接受、可理解、可运用;并不要求发现放之四海皆准的知识,仅支持特定的发现问题。随着信息技术的高速发展,人们积累的数据量急剧增长,动辄以TB计,如何从海量的数据中提取有用的知识成为当务之急。数据挖掘就是为顺应种需要应运而生发展起来的数据处理技术。是知识发现(Knowledge Discovery in Database)的关键步骤。

    数据挖掘与传统的数据分析(如查询、报表、联机应用分析)的本质区别是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识.数据挖掘所得到的信息应具有先前未知,有效和可实用三个特征。

    数据挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。   

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值