Linux下的段错误调试方法

本文详细介绍了在Linux环境中,如何调试C/C++程序出现的段错误。内容包括利用gdb逐步调试、分析core文件、段错误时启动调试、利用backtrace和objdump进行分析。通过实例代码和调试步骤,帮助开发者快速定位并解决内存访问越界的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转自http://wenku.baidu.com/view/7416d23710661ed9ad51f33f .html
  1. 执行socket文件时,出现段错误 (core dumped)

产生段错误就是访问了错误的内存段,一般是你没有权限,或者根本就不存在对应的物理内存,尤其常见的是访问0地址.

解决方法:

利用gdb逐步查找段错误:

首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g -rdynamic"的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下:
   1
gcc -g -rdynamic d.c
   2
gdb ./a.out
   3
r
这样就找到了出错位置。然后在相应位置修改。


  1. linux 段错误 如何调试

 linux下的c程序常常会因为内存访问错误等原因造成segment fault(段错误)此时如果系统core dump功能是打开的,那么将会有内存映像转储到硬盘上来,之后可以用gdbcore文件进行分析,还原系统发生段错误时刻的堆栈情况。这对于我们发现程序bug很有帮助。

    使用ulimit -a可以查看系统core文件的大小限制;使用ulimit -c [kbytes]可以设置系统允许生成的core文件大小。

ulimit -c 0 不产生core文件
ulimit -c 100
设置core文件最大为100k

ulimit -c unlimited 不限制core文件大小

步骤:

1、当发生段错误时,我们查看ulimit -a  core file size (blocks, -c) 0)并没有文件, 

2、设置 :ulimit -c unlimited   不限制core文件大小

3.、运行程序 ,发生段错误时会自动记录在core

4test]$ ls -al core.* 在那个文件下(-rw------- 1 leconte leconte 139264 01-06 22:3 1 core.2065

5、使用gdb 运行程序和段错误记录的文件。(est]$ gdb ./test core.2065

6、会提哪行有错。

     很多系统默认的core文件大小都是0,我们可以通过在Shell的启动脚本/etc/bashrc或者~/.bashrc等地方来加入 ulimit -c 命令来指定core文件大小,从而确保core文件能够生成。

除此之外,还可以在/proc/sys/kernel/core_pattern里设置core文件的文件名模板,详情请看core的官方man手册。


  1. 段错误bug的调试

我们在用C/C++语言写程序的时侯,内存管理的绝大部分工作都是需要我们来做的。实际上,内存管理是一个比较繁琐的工作,无论你多高明,经验多丰富,难免会在此处犯些小错误,而通常这些错误又是那么的浅显而易于消除。但是手工“除虫”(debug),往往是效率低下且让人厌烦的,本文将就"段错误"这个内存访问越界的错误谈谈如何快速定位这些"段错误"的语句。

下面将就以下的一个存在段错误的程序介绍几种调试方法:

1 dummy_function (void)

2 {

3 unsigned char *ptr = 0x00;

4 *ptr = 0x00;

5 }

6

7 int main (void)

8 {

9 dummy_function ();

10

11 return 0;

12 }


作为一个熟练的C/C++程序员,以上代码的bug应该是很清楚的,因为它尝试操作地址为0的内存区域,而这个内存区域通常是不可访问的禁区,当然就会出错了。我们尝试编译运行它:

xiaosuo@gentux test $ ./a.out

段错误


果然不出所料,它出错并退出了。

1.利用gdb逐步查找段错误:

这种方法也是被大众所熟知并广泛采用的方法,首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g -rdynamic"的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下:

xiaosuo@gentux test $ gcc -g -rdynamic d.c

xiaosuo@gentux test $ gdb ./a.out

GNU gdb 6.5

……

(gdb) r

Starting program: /home/xiaosuo/test/a.out


Program received signal SIGSEGV, Segmentation fault.

0x08048524 in dummy_function () at d.c:4

4 *ptr = 0x00;

(gdb)


哦?!好像不用一步步调试我们就找到了出错位置d.c文件的第4行,其实就是如此的简单。

从这里我们还发现进程是由于收到了SIGSEGV信号而结束的。通过进一步的查阅文档(man 7 signal),我们知道SIGSEGV默认handler的动作是打印”段错误"的出错信息,并产生Core文件,由此我们又产生了方法二。

2.分析Core文件:

Core文件是什么呢?

The default action of certain signals is to cause a process to terminate and produce a core dump file, a disk file containing an image of the process's memory at the time of termination. A list of the signals which cause a process to dump core can be found in signal(7).

以上资料摘自man page(man 5 core)。不过奇怪了,我的系统上并没有找到core文件。后来,忆起为了渐少系统上的拉圾文件的数量(本人有些洁癖,这也是我喜欢Gentoo的原因之一),禁止了core文件的生成,查看了以下果真如此,将系统的core文件的大小限制在512K大小,再试:

xiaosuo@gentux test $ ulimit -c

0

xiaosuo@gentux test $ ulimit -c 1000

xiaosuo@gentux test $ ulimit -c

1000

xiaosuo@gentux test $ ./a.out

段错误 (core dumped)

xiaosuo@gentux test $ ls

a.out core d.c f.c g.c pango.c test_iconv.c test_regex.c


core文件终于产生了,用gdb调试一下看看吧:

xiaosuo@gentux test $ gdb ./a.out core

GNU gdb 6.5


warning: Can't read pathname for load map: 输入/输出错误.

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

Core was generated by `./a.out'.

Program terminated with signal 11, Segmentation fault.

#0 0x08048524 in dummy_function () at d.c:4

4 *ptr = 0x00;


接着考虑下去,以前用windows系统下的ie的时侯,有时打开某些网页,会出现“运行时错误”,这个时侯如果恰好你的机器上又装有windows的编译器的话,他会弹出来一个对话框,问你是否进行调试,如果你选择是,编译器将被打开,并进入调试状态,开始调试。

Linux下如何做到这些呢?我的大脑飞速地旋转着,有了,让它在SIGSEGVhandler中调用gdb,于是第三个方法又诞生了:

3.段错误时启动调试:

#include

#include

#include

#include


void dump(int signo)

{

char buf[1024];

char cmd[1024];

FILE *fh;


snprintf(buf, sizeof(buf), "/proc/%d/cmdline", getpid());

if(!(fh = fopen(buf, "r")))

exit(0);

if(!fgets(buf, sizeof(buf), fh))

exit(0);

fclose(fh);

if(buf[strlen(buf) - 1] == '\n')

buf[strlen(buf) - 1] = '\0';

snprintf(cmd, sizeof(cmd), "gdb %s %d", buf, getpid());

system(cmd);


exit(0);

}


void

dummy_function (void)

{

unsigned char *ptr = 0x00;

*ptr = 0x00;

}


int

main (void)

{

signal(SIGSEGV, &dump);

dummy_function ();


return 0;

}


编译运行效果如下:

xiaosuo@gentux test $ gcc -g -rdynamic f.c

xiaosuo@gentux test $ ./a.out

GNU gdb 6.5

Copyright (C) 2006 Free Software Foundation, Inc.

Attaching to program: /home/xiaosuo/test/a.out, process 9563

Reading symbols from /lib/libc.so.6...done.

Loaded symbols for /lib/libc.so.6

Reading symbols from /lib/ld-linux.so.2...done.

Loaded symbols for /lib/ld-linux.so.2

0xffffe410 in __kernel_vsyscall ()

(gdb) bt

#0 0xffffe410 in __kernel_vsyscall ()

#1 0xb7ee4b53 in waitpid () from /lib/libc.so.6

#2 0xb7e925c9 in strtold_l () from /lib/libc.so.6

#3 0x08048830 in dump (signo=11) at f.c:22

#4

#5 0x0804884c in dummy_function () at f.c:31

#6 0x08048886 in main () at f.c:38


以上方法都是在系统上有gdb的前提下进行的,如果没有呢?其实glibc为我们提供了此类能够dump栈内容的函数簇,详见/usr/include/execinfo.h(这些函数都没有提供man page,难怪我们找不到),另外你也可以通过gnu的手册进行学习。

4.利用backtraceobjdump进行分析:

重写的代码如下:

#include

#include

#include

#include


 

void

dummy_function (void)

{

unsigned char *ptr = 0x00;

*ptr = 0x00;

}


void dump(int signo)

{

void *array[10];

size_t size;

char **strings;

size_t i;


size = backtrace (array, 10);

strings = backtrace_symbols (array, size);


printf ("Obtained %zd stack frames.\n", size);


for (i = 0; i < size; i++)

printf ("%s\n", strings[i]);


free (strings);


exit(0);

}


int

main (void)

{

signal(SIGSEGV, &dump);

dummy_function ();


return 0;

}


编译运行结果如下:

xiaosuo@gentux test $ gcc -g -rdynamic g.c

xiaosuo@gentux test $ ./a.out

Obtained 5 stack frames.

./a.out(dump+0x19) [0x80486c2]

[0xffffe420]

./a.out(main+0x35) [0x804876f]

/lib/libc.so.6(__libc_start_main+0xe6) [0xb7e02866]

./a.out [0x8048601]


这次你可能有些失望,似乎没能给出足够的信息来标示错误,不急,先看看能分析出来什么吧,objdump反汇编程序,找到地址0x804876f对应的代码位置:

xiaosuo@gentux test $ objdump -d a.out



8048765: e8 02 fe ff ff call 804856c

804876a: e8 25 ff ff ff call 8048694

804876f: b8 00 00 00 00 mov $0x0,�x

8048774: c9 leave


我们还是找到了在哪个函数(dummy_function)中出错的,信息已然不是很完整,不过有总比没有好的



  1. Linux下的段错误的原因及调试

简而言之,产生段错误就是访问了错误的内存段,一般是你没有权限,或者根本就不存在对应的物理内存,尤其常见的是访问0地址.

一般来说, 段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gdtr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的 gdt表,后13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了.

在编程中以下几类做法容易导致段错误,基本是是错误地使用指针引起的

1)访问系统数据区,尤其是往系统保护的内存地址写数据

   最常见就是给一个指针以0地址

2)内存越界(数组越界,变量类型不一致等) 访问到不属于你的内存区域

解决方法

我们在用C/C++语言写程序的时侯,内存管理的绝大部分工作都是需要我们来做的。实际上,内存管理是一个比较繁琐的工作,无论你多高明,经验多丰富,难免会在此处犯些小错误,而通常这些错误又是那么的浅显而易于消除。但是手工“除虫”(debug),往往是效率低下且让人厌烦的,本文将就"段错误"这个内存访问越界的错误谈谈如何快速定位这些"段错误"的语句。
下面将就以下的一个存在段错误的程序介绍几种调试方法:

     dummy_function (void)
     {
             unsigned char *ptr = 0x00;
             *ptr = 0x00;
     }
     6
     int main (void)
     {
             dummy_function ();
    10
    11          return 0;
    12  }

作为一个熟练的C/C++程序员,以上代码的bug应该是很清楚的,因为它尝试操作地址为0的内存区域,而这个内存区域通常是不可访问的禁区,当然就会出错了。我们尝试编译运行它:

xiaosuo@gentux test $ ./a.out
段错误

果然不出所料,它出错并退出了。

1.利用gdb逐步查找段错误:

这种方法也是被大众所熟知并广泛采用的方法,首先我们需要一个带有调试信息的可执行程序,所以我们加上“-g -rdynamic"的参数进行编译,然后用gdb调试运行这个新编译的程序,具体步骤如下:

xiaosuo@gentux test $ gcc -g -rdynamic d.c
xiaosuo@gentux test $ gdb ./a.out
GNU gdb 6.5
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".

(gdb) r
Starting program: /home/xiaosuo/test/a.out

Program received signal SIGSEGV, Segmentation fault.
0x08048524 in dummy_function () at d.c:4
              *ptr = 0x00;
(gdb)                      

哦?!好像不用一步步调试我们就找到了出错位置d.c文件的第4行,其实就是如此的简单。

从这里我们还发现进程是由于收到了SIGSEGV信号而结束的。通过进一步的查阅文档(man 7 signal),我们知道SIGSEGV默认handler的动作是打印”段错误"的出错信息,并产生Core文件,由此我们又产生了方法二。
2.
分析Core文件:

Core文件是什么呢?

The  default action of certain signals is to cause a process to terminate and produce a core dump file, a disk file containing an image of the process's memory  at the time of termination.  A list of the signals which cause a process to dump core can be found in signal(7).

以上资料摘自man page(man 5 core)。不过奇怪了,我的系统上并没有找到core文件。后来,忆起为了渐少系统上的拉圾文件的数量(本人有些洁癖,这也是我喜欢Gentoo的原因之一),禁止了core文件的生成,查看了以下果真如此,将系统的core文件的大小限制在512K大小,再试:

xiaosuo@gentux test $ ulimit -c
0
xiaosuo@gentux test $ ulimit -c 1000
xiaosuo@gentux test $ ulimit -c
1000
xiaosuo@gentux test $ ./a.out
段错误 (core dumped)
xiaosuo@gentux test $ ls
a.out  core  d.c  f.c  g.c  pango.c  test_iconv.c  test_regex.c

core文件终于产生了,用gdb调试一下看看吧:

xiaosuo@gentux test $ gdb ./a.out core
GNU gdb 6.5
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".


warning: Can't read pathname for load map:
输入/输出错误.
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
Core was generated by `./a.out'.
Program terminated with signal 11, Segmentation fault.
#0  0x08048524 in dummy_function () at d.c:4
              *ptr = 0x00;

接着考虑下去,以前用windows系统下的ie的时侯,有时打开某些网页,会出现“运行时错误”,这个时侯如果恰好你的机器上又装有windows的编译器的话,他会弹出来一个对话框,问你是否进行调试,如果你选择是,编译器将被打开,并进入调试状态,开始调试。
Linux
下如何做到这些呢?我的大脑飞速地旋转着,有了,让它在SIGSEGVhandler中调用gdb,于是第三个方法又诞生了:
3.
段错误时启动调试:

#include
#include
#include
#include

void dump(int signo)
{
        char buf[1024];
        char cmd[1024];
        FILE *fh;

        snprintf(buf, sizeof(buf), "/proc/%d/cmdline", getpid());
        if(!(fh = fopen(buf, "r")))
                exit(0);
        if(!fgets(buf, sizeof(buf), fh))
                exit(0);
        fclose(fh);
        if(buf[strlen(buf) - 1] == '\n')
                buf[strlen(buf) - 1] = '\0';
        snprintf(cmd, sizeof(cmd), "gdb %s %d", buf, getpid());
        system(cmd);

        exit(0);
}

        void
dummy_function (void)
{
        unsigned char *ptr = 0x00;
        *ptr = 0x00;
}

        int
main (void)
{
        signal(SIGSEGV, &dump);
        dummy_function ();

        return 0;
}

编译运行效果如下:

xiaosuo@gentux test $ gcc -g -rdynamic f.c
xiaosuo@gentux test $ ./a.out
GNU gdb 6.5
Copyright (C) 2006 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB.  Type "show warranty" for details.
This GDB was configured as "i686-pc-linux-gnu"...Using host libthread_db library "/lib/libthread_db.so.1".

Attaching to program: /home/xiaosuo/test/a.out, process 9563
Reading symbols from /lib/libc.so.6...done.
Loaded symbols for /lib/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
0xffffe410 in __kernel_vsyscall ()
(gdb) bt
#0  0xffffe410 in __kernel_vsyscall ()
#1  0xb7ee4b53 in waitpid () from /lib/libc.so.6
#2  0xb7e925c9 in strtold_l () from /lib/libc.so.6
#3  0x08048830 in dump (signo=11) at f.c:22
#4 
#5  0x0804884c in dummy_function () at f.c:31
#6  0x08048886 in main () at f.c:38

怎么样?是不是依旧很酷?
以上方法都是在系统上有gdb的前提下进行的,如果没有呢?其实glibc为我们提供了此类能够dump栈内容的函数簇,详见/usr/include/execinfo.h(这些函数都没有提供man page,难怪我们找不到),另外你也可以通过gnu的手册进行学习。
4.
利用backtraceobjdump进行分析:
重写的代码如下:

#include
#include
#include
#include


        void
dummy_function (void)
{
        unsigned char *ptr = 0x00;
        *ptr = 0x00;
}

void dump(int signo)
{
        void *array[10];
        size_t size;
        char **strings;
        size_t i;

        size = backtrace (array, 10);
        strings = backtrace_symbols (array, size);

        printf ("Obtained %zd stack frames.\n", size);

        for (i = 0; i < size; i++)
                printf ("%s\n", strings[i]);

        free (strings);

        exit(0);
}

        int
main (void)
{
        signal(SIGSEGV, &dump);
        dummy_function ();

        return 0;
}

编译运行结果如下:

xiaosuo@gentux test $ gcc -g -rdynamic g.c
xiaosuo@gentux test $ ./a.out
Obtained 5 stack frames.
./a.out(dump+0x19) [0x80486c2]
[0xffffe420]
./a.out(main+0x35) [0x804876f]
/lib/libc.so.6(__libc_start_main+0xe6) [0xb7e02866]
./a.out [0x8048601]

这次你可能有些失望,似乎没能给出足够的信息来标示错误,不急,先看看能分析出来什么吧,objdump反汇编程序,找到地址0x804876f对应的代码位置:

xiaosuo@gentux test $ objdump -d a.out


 8048765:       e8 02 fe ff ff          call   804856c
 804876a:       e8 25 ff ff ff          call   8048694
 
804876f      b8 00 00 00 00          mov    $0x0,�x
 8048774:       c9                      leave

我们还是找到了在哪个函数(dummy_function)中出错的,信息已然不是很完整,不过有总比没有好的啊!

  1. 启动jvm虚拟机时的“段错误”

今天,在部署U盘程序时,重启resin时,报错

#

# An unexpected error has been detected by HotSpot Virtual Machine:

#

# SIGBUS (0×7) at pc=0x00000034da87aa5b, pid=3236, tid=47594056421008

#

# Java VM: Java HotSpot(TM) 64-Bit Server VM (1.5.0_19-b02 mixed mode)

# Problematic frame:

# 段错误

此时,无论直接运行java或用ant编译,都报以上错误

把所有的java进程都kill掉后,可以正常重启2jvm,在启动第3个时,同样的错误又出现了

尝试更换成jdk5的其它版本,错误依旧

于是,决定用jdk6试试,如果不行,准备只好重启机器了…

没想到,在安装jdk6时,失败了,先提示/tmp空间不足,然后又报段错误

这时,才突然明白,可能是/tmp空间满了,导致无法运行java

/tmp空间清理后,用以前的jdk可正常启动resin

那么,启动java进程时,会向/tmp目录下写什么东西呢?

进去后,会发现有一个/tmp/hsperfdata_root目录

该目录下有一些文件,这些文件就是对应java进程的pid

而文件的内容似乎是启动java的命令,还有其它的一些log信息

看来java是利用该文件来记录启动时的一些log

  1. Linux段错误

  1. 什么是段错误?

所谓的段错误就是指访问的内存超出了系统所给这个程序的内存空间,通常这个值是由gdtr来保存的,他是一个48位的寄存器,其中的32位是保存由它指向的 gdt表,后13位保存相应于gdt的下标,最后3位包括了程序是否在内存中以及程序的在cpu中的运行级别,指向的gdt是由以64位为一个单位的表,在这张表中就保存着程序运行的代码段以及数据段的起始地址以及与此相应的段限和页面交换还有程序运行级别还有内存粒度等等的信息。一旦一个程序发生了越界访问,cpu就会产生相应的异常保护,于是segmentation fault就出现了

通过上面的解释,段错误应该就是访问了不可访问的内存,这个内存区要么是不存在的,要么是受到系统保护的。

  1. 为什么段错误这么麻烦?

中国linux论坛有一篇精华帖子《Segment fault 之永远的痛》(http://www.linuxforum.net/forum/gshowflat.php?Cat=&Board= program&Number=193239&page=2&view=collapsed&sb=5&o=all&fpart=1&vc=1)在主题帖子里头,作者这么写道:

写程序好多年了,Segment fault 是许多C程序员头疼的提示。指针是好东西,但是随着指针的使用却诞生了这个同样威力巨大的恶魔。Segment fault 之所以能够流行于世,是与Glibc库中基本所有的函数都默认型参指针为非空有着密切关系的。不知道什么时候才可以有能够处理NULLglibc库诞生啊!不得已,我现在为好多的函数做了衣服,避免glibc的函数被NULL给感染,导致我的Mem访问错误,而我还不知道NULL这个病毒已经在侵蚀我的身体了。

后面有好多网友都跟帖了,讨论了Segmentation faults为什么这么“痛”,尤其是对于服务器程序来说,是非常头痛的,为了提高效率,要尽量减少一些不必要的段错误的“判断和处理”,但是不检查又可能会存在段错误的隐患。

那么如何处理这个“麻烦”呢?

就像人不可能“完美”一样,由人创造的“计算机语言“同样没有“完美”的解决办法。

我们更好的解决办法也许是:

通过学习前人的经验和开发的工具,不断的尝试和研究,找出更恰当的方法来避免、发现并处理它。对于一些常见的地方,我们可以避免,对于一些“隐藏”的地方,我们要发现它,发现以后就要及时处理,避免留下隐患。

下面我们可以通过具体的实验来举出一些经常出现段错误的地方,然后再举例子来发现和找出这类错误藏身之处,最后处理掉。

  1. 编程中通常碰到段错误的地方有哪些?

为了进行下面的实验,我们需要准备两个工具,一个是gcc,一个是gdb.我是在ubuntu下做的实验,安装这两个东西是比较简单的
sudo apt-get install gcc-4.0 libc6-dev
sudo apt-get install gdb

好了,开始进入我们的实验,我们粗略的分一下类

  • 往受到系统保护的内存地址写数据

有些内存是内核占用的或者是其他程序正在使用,为了保证系统正常工作,所以会受到系统的保护,而不能任意访问。

例子1
#include
int
main(){       
int i = 0;       
scanf ("%d", i);        
printf ("%d\n", i);       
return 0;
}

 编译和执行一下
falcon@falcon:~/temp$ gcc -o segerr segerr.c
falcon@falcon:~/temp$ ./segerr
10
段错误

 咋一看,好像没有问题哦,不就是读取一个数据然后给输出来吗?
下面我们来调试一下,看看是什么原因?

falcon@falcon:~/temp$ gcc -g -o segerr segerr.c        -g选项查看调试信息
falcon@falcon:~/temp$ gdb ./segerr
GNU gdb 6.4-debian

Copyright 2005 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i486-linux-gnu"…Using host libthread_db library "/ lib/tls/i686/cmov/libthread_db.so.1".

(gdb) l                    l(list)显示我们的源代码
      #include

2
      int

      main()
      {
              int i = 0;
7
              scanf ("%d", i);
              printf ("%d\n", i);
10              return 0;
(gdb) b 8               
b(break)设置断点
Breakpoint 1 at 0x80483b7: file segerr.c, line 8.
(gdb) p i               
p(print)打印变量i的值[看到没,这里i的值是0]
$1 = 0

(gdb) r                    r(run)运行,直到断点处
Starting program: /home/falcon/temp/segerr

Breakpoint 1, main () at segerr.c:8
              scanf ("%d", i);
[
试图往地址0处写进一个值]
(gdb) n                   
n(next)执行下一步
10

Program received signal SIGSEGV, Segmentation fault.
0xb7e9a1ca in _IO_vfscanf () from /lib/tls/i686/cmov/libc.so.6
(gdb) c           
在上面我们接收到了SIGSEGV,然后用c(continue)继续执行
Continuing.

Program terminated with signal SIGSEGV, Segmentation fault.
The program no longer exists.
(gdb) quit       
退出gdb

果然,我们“不小心”把&i写成了i

而我们刚开始初始化了i0,这样我们不是试图向内存地址0存放一个值吗?实际上很多情况下,你即使没有初始化为零,默认也可能是0,所以要特别注意。

补充:

可以通过man 7 signal查看SIGSEGV的信息。

falcon@falcon:~/temp$ man 7 signal | grep SEGV
Reformatting signal(7), please wait…
       SIGSEGV      11       Core    Invalid memory reference

例子2
#include
int main(){       
char *p;       
p = NULL;       
*p = ‘x’;       
printf("%c", *p);       
return 0;
}

很容易发现,这个例子也是试图往内存地址0处写东西。

这里我们通过gdb来查看段错误所在的行
falcon@falcon:~/temp$ gcc -g -o segerr segerr.c
falcon@falcon:~/temp$ gdb ./segerr
GNU gdb 6.4-debian
Copyright 2005 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are

welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i486-linux-gnu"…Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".

(gdb) r        直接运行,我们看到抛出段错误以后,自动显示出了出现段错误的行,这就是一个找出段错误的方法
Starting program: /home/falcon/temp/segerr

Program received signal SIGSEGV, Segmentation fault.
0×08048516 in main () at segerr.c:10
10              *p = ‘x’;
(gdb)

  • 内存越界(数组越界,变量类型不一致等)

例子3
#include
int
main(){       
char test[1];       
printf("%c", test[1000000000]);       

return 0;
}

这里是比较极端的例子,但是有时候可能是会出现的,是个明显的数组越界的问题或者是这个地址是根本就不存在的。

例子4
#include
int
main(){       
int b = 10;       
printf("%s\n", b);       
return 0;
}

我们试图把一个整数按照字符串的方式输出出去,这是什么问题呢?

由于还不熟悉调试动态链接库,所以我只是找到了printf的源代码的这里声明部分:

int pos =0 ,cnt_printed_chars =0 ,i ;
unsigned char *chptr ;
va_list ap ;
%s
格式控制部分:
case ‘s’:
    chptr =va_arg (ap ,unsigned char *);
    i =0 ;
    while (chptr [i ])
    {…
        cnt_printed_chars ++;
        putchar (chptr [i ++]);
}

仔细看看,发现了这样一个问题,在打印字符串的时候,实际上是打印某个地址开始的所有字符,但是当你想把整数当字符串打印的时候,这个整数被当成了一个地址,然后printf从这个地址开始去打印字符,指导某个位置上的值为\0。所以,如果这个整数代表的地址不存在或者不可访问,自然也是访问了不该访问的内存——segmentation fault

类似的,还有诸如:sprintf等的格式控制问题

比如,试图把char型或者是int的按照%s输出或存放起来,如:

#include
#include
char c=’c';
int i=10;
char buf[100];
printf("%s", c);        //
试图把char型按照字符串格式输出,这里的字符会解释成整数,再解释成地址,所以原因同上面那个例子printf("%s", i);           

//试图把int型按照字符串输出
memset(buf, 0, 100);
sprintf(buf, "%s", c);    //
试图把char型按照字符串格式转换
memset(buf, 0, 100);
sprintf(buf, "%s", i);   //
试图把int型按照字符串转换


<1>定义了指针后记得初始化,在使用的时候记得判断是否为NULL

<2>在使用数组的时候是否被初始化,数组下标是否越界,数组元素是否存在等

<3>在变量处理的时候变量的格式控制是否合理等

再举一个比较不错的例子:

我在进行一个多线程编程的例子里头,定义了一个线程数组

#define THREAD_MAX_NUM
pthread_t thread[THREAD_MAX_NUM];
pthread_create创建了各个线程,然后用pthread_join来等待线程的结束

刚开始我就直接等待,在创建线程都成功的时候,pthread_join能够顺利等待各个线程结束,但是一旦创建线程失败,那用pthread_join 来等待那个本不存在的线程时自然会存在访问不能访问的内存的情况,从而导致段错误的发生,后来,通过不断调试和思考,并且得到网络上资料的帮助,找到了上面的原因和解决办法:

在创建线程之前,先初始化我们的线程数组,在等待线程的结束的时候,判断线程是否为我们的初始值

如果是的话,说明我们的线程并没有创建成功,所以就不能等拉。否则就会存在释放那些并不存在或者不可访问的内存空间。

上面给出了很常见的几种出现段错误的地方,这样在遇到它们的时候就容易避免拉。但是人有时候肯定也会有疏忽的,甚至可能还是会经常出现上面的问题或者其他常见的问题,所以对于一些大型一点的程序,如何跟踪并找到程序中的段错误位置就是需要掌握的一门技巧拉。

  1. 如何发现程序中的段错误?

有个网友对这个做了比较全面的总结,除了感谢他外,我把地址弄了过来。文章名字叫《段错误bug的调试》

(http://www.cublog.cn/u/5251/showart.php?id=173718),应该说是很全面的。

而我常用的调试方法有:

1)在程序内部的关键部位输出(printf)信息,那样可以跟踪 段错误 在代码中可能的位置

为了方便使用这种调试方法,可以用条件编译指令#ifdef DEBUG#endifprintf函数给包含起来,编译的时候加上-DDEBUG参数就可以查看调试信息。反之,不加上该参数进行调试就可以。
2
)用gdb来调试,在运行到段错误的地方,会自动停下来并显示出错的行和行号

这个应该是很常用的,如果需要用gdb调试,记得在编译的时候加上-g参数,用来显示调试信息,对于这个,网友在《段错误bug的调试》文章里创造性的使用这样的方法,使得我们在执行程序的时候就可以动态扑获段错误可能出现的位置:通过扑获SIGSEGV信号来触发系统调用gdb来输出调试信息。如果加上上面提到的条件编译,那我们就可以非常方便的进行段错误的调试拉。
3
)还有一个catchsegv命令通过查看帮助信息,可以看到
Catch segmentation faults in programs
这个东西就是用来扑获段错误的,不过打印出来的是一些register里头的东西,“看不太懂”。

参考资料[具体地址在上面的文章中都已经给出拉]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值