[LintCode] Connecting Graph

本文介绍了一种图连接查询算法的两种实现方式:一种基于BFS的解决方案,平均时间复杂度为O(V+E),空间复杂度为O(V+E);另一种采用并查集实现,平均时间复杂度和空间复杂度均为O(V)。并查集方案不存储边信息,适用于需要频繁进行节点连接和查询操作的场景。

Given n nodes in a graph labeled from 1 to n. There is no edges in the graph at beginning.

You need to support the following method:

1. connect(a, b), add an edge to connect node a and node b. 2.query(a, b)`, check if two nodes are connected

Example

5 // n = 5
query(1, 2) return false
connect(1, 2)
query(1, 3) return false
connect(2, 4)
query(1, 4) return true



转载于:https://www.cnblogs.com/lz87/p/7500092.html

内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
03-08
### Graphs in Computer Science and Technology Graph theory plays an essential role within computer science, providing a powerful framework to model relationships between objects or entities. A graph consists of vertices (also called nodes) connected by edges that can be directed or undirected depending on whether the relationship has directionality[^1]. In many applications such as social networks, transportation systems, and web pages linking structure, graphs serve as fundamental models representing these complex interconnections effectively. #### Representation Methods for Graph Data Structure Two primary methods exist for storing graph data structures: - **Adjacency Matrix**: This method uses a two-dimensional array where each entry indicates presence/absence of connection between pairs of vertices. - **Adjacency List**: An alternative approach involves maintaining lists associated with every vertex containing all directly reachable neighbors from it through existing connections represented via linked entries pointing towards adjacent elements forming chains emanating outwardly starting at source points until reaching terminal destinations along paths traversed during searches conducted over network topologies described mathematically using this formalism[^2]. #### Common Operations Performed on Graphs Several key operations frequently performed include but are not limited to: - Traversing entire components recursively visiting unvisited parts systematically ensuring full coverage without redundancy; - Searching specific items efficiently utilizing depth-first search (DFS), breadth-first search (BFS); - Finding shortest path solutions connecting distant locations optimally under varying constraints like distance minimization criteria applied across weighted links joining intermediate stops encountered en route when navigating large-scale interconnected frameworks modeled after real-world scenarios found commonly today inside modern software platforms built around robust computational paradigms supporting advanced analytics capabilities leveraging insights derived therefrom[^3]. ```python import collections def bfs(graph, start): visited = set() queue = collections.deque([start]) while queue: node = queue.popleft() if node not in visited: print(node) visited.add(node) for neighbor in graph[node]: if neighbor not in visited: queue.append(neighbor) # Example usage graph_example = { 'A': ['B', 'C'], 'B': ['D', 'E'], 'C': [], 'D': [], 'E': [] } bfs(graph_example, 'A') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值