[Coding Made Simple] Matrix Chain Multiplication

本文探讨了矩阵链乘法中的优化问题,通过合理的括号安排减少乘法操作次数。介绍了两种算法:简单的递归方法与动态规划方法,并通过示例说明了如何实现这两种算法。

Given some matrices, in what order you would multiply them to minimize cost of multiplication.

 The following problem formulation is extracted from this link.

Problem Formulation

Note that although we can use any legal parenthesization, which will lead to a valid result. But, not all parenthesizations involve the same number of operations. To understand this point, consider the problem of a chain A1A2A3 of three matrices and suppose

A1 be of dimension 10 × 100
A
2 be of dimension 100 × 5
A
3 be of dimension 5 × 50

Then,

MultCost[((A1 A2A3)] = (10 . 100 . 5) +  (10 . 5 . 50) = 7,500 scalar multiplications.

MultCost[(A1 (A2 A3))] = (100 . 5 . 50) + (10 . 100 . 50) = 75,000 scalar multiplications.

It is easy to see that even for this small example, computing the product according to first parenthesization is 10 times faster.

 

The Chain Matrix Multiplication Problem

Given a sequence of n matrices A1A2, ... An, and their dimensions p0p1p2, ..., pn, where where i = 1, 2, ..., n, matrix Ai has dimension p− 1 × pi, determine the order of multiplication that minimizes the the number of scalar multiplications.

 

Equivalent formulation (perhaps more easy to work with!)

Given n matrices, A1A2, ... An, where for 1 ≤ i ≤ nAi is a p− 1 × pi, matrix, parenthesize the product A1A2, ... An so as to minimize the total cost, assuming that the cost of multiplying an p− 1× pi matrix by a p× pi + 1 matrix using the naive algorithm is p− 1× p× pi + 1.

 

Note that this algorithm does not perform the multiplications, it just figures out the best order in which to perform the multiplication operations.

 

Solution 1. Simple recursive approach 

The original problem can be solved by recursively solving its subproblems as follows.

cost(i, j) is the min of cost(i, k) + cost(k + 1, j) + matrices[i].row * matrices[k].col * matrices[j].col for all k >= i && k < j.

The base case is when i == j, the cost is 0 as it takes nothing to multipy 1 matrix.

 

Once again the same with a lot of recursive algorithms, it has the overlapping subproblems issue.

For example, to compute cost(0, 3), the following computations are done separately.

cost(0, 2), cost(3, 3);

cost(0,1), cost(2, 3);

cost(0, 0), cost(1, 3);

But in the process of computing cost(0,2), cost(0, 1) is computed, which is computed later in a different parenthess split. This 

redundancy has way more presence as the input grows bigger. 

 

Solution 2. Dynamic Programming, O(n^3) runtime, O(n^2) space 

To avoid the redundany issue in solution 1, we should use dynamic programming.

State: cost[i][j]: the min cost of multiplying matrices i to j.

Function: same with the recursive formula.

 

 1 class Matrix {
 2     int row;
 3     int col;
 4     Matrix(int row, int col){
 5         this.row = row;
 6         this.col = col;
 7     }
 8 }
 9 public class Solution {
10     public int matrixChainMultiRecursion(Matrix[] matrices) {
11         if(matrices == null || matrices.length == 0) {
12             return 0;
13         }        
14         return recursiveHelper(matrices, 0, matrices.length - 1);
15     }
16     private int recursiveHelper(Matrix[] matrices, int startIdx, int endIdx) {
17         if(startIdx == endIdx){
18             return 0;
19         }
20         int miniCost = Integer.MAX_VALUE;
21         for(int i = startIdx; i < endIdx; i++){
22             int leftCost = recursiveHelper(matrices, startIdx, i);
23             int rightCost = recursiveHelper(matrices, i + 1, endIdx);
24             int cost = leftCost + rightCost + matrices[startIdx].row * matrices[i].col * matrices[endIdx].col;
25             miniCost = Math.min(cost, miniCost);
26         }
27         return miniCost;
28     }
29     public int matrixChainMultiDp(Matrix[] matrices) {
30         if(matrices == null || matrices.length == 0) {
31             return 0;
32         }
33         int[][] cost = new int[matrices.length][matrices.length];
34         for(int i = 0; i < matrices.length; i++){
35             int j = i;
36             for(; j < matrices.length; j++){
37                 cost[i][j] = Integer.MAX_VALUE;
38             }
39         }
40         for(int i = 0; i < matrices.length; i++){
41             cost[i][i] = 0;
42         }
43         for(int len = 2; len <= matrices.length; len++){
44             for(int i = 0; i <= matrices.length - len; i++){
45                 for(int j = i; j < i + len - 1; j++){
46                     int c = cost[i][j] + cost[j + 1][i + len - 1] + matrices[i].row * matrices[j + 1].row * matrices[i + len - 1].col;
47                     cost[i][i + len - 1] = Math.min(cost[i][i + len - 1], c);                    
48                 }
49             }
50         }
51         return cost[0][matrices.length - 1];
52     }
53     public static void main(String[] args) {
54         Matrix m1 = new Matrix(2, 3);
55         Matrix m2 = new Matrix(3, 6);
56         Matrix m3 = new Matrix(6, 4);
57         Matrix m4 = new Matrix(4, 5);
58         Matrix[] matrices = {m1, m2, m3, m4};
59         Solution sol = new Solution();
60         System.out.println(sol.matrixChainMultiRecursion(matrices));
61         System.out.println(sol.matrixChainMultiDp(matrices));        
62     }
63 }

 

转载于:https://www.cnblogs.com/lz87/p/7283009.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值