[Coding Made Simple] Longest Common Subsequence

本文介绍了求解两个字符串的最长公共子序列(LCS)问题的三种方法:递归法、动态规划法(O(n^2)空间复杂度)及动态规划法的优化版(O(n)空间复杂度),并提供了详细的代码实现。

Given two strings, find the longest common subsequence (LCS).

Your code should return the length of LCS.

Clarification
Example

For "ABCD" and "EDCA", the LCS is "A" (or "D""C"), return 1.

For "ABCD" and "EACB", the LCS is "AC", return 2.

 

Solution 1. Recursion

If we start to compare two characters from the end of both strings, we'll have the following possible cases.

1. A.charAt(n1 - 1) == B.charAt(n2 - 1), then the lcs is 1 + lcs of (A[0.....n1 - 2], B[0....n2 - 2])

2. if they are not the same, then the lcs is the max of lcs of (A[0.....n1 - 1], B[0......n2 - 2]) and lcs of (A[0.....n1 - 2], B[0.....n2 - 1])

Both cases reduce the original problem to a smaller problem, which can be solved recursively. 

The base case is when either the first or the second string has no more characters to be compared.

 

This solution does redundant work so it is not efficient.  For example, say we have A[0....5] and B[0....5].

assume A[5] == B[5], then we proceed to solve lcs of (A[0....4], B[0....4]);

assume A[4] != B[4], then we need to solve lcs of (A[0....4], B[0....3]) and lcs of (A[0...3], B[0....4]);

For lcs A[0...4], B[0...3], we may need to solve lcs of A[0....3], B[0...3];

For lcs A[0...3], B[0...4], we may need to solve lcs of A[0....3], B[0...3] again;

And so on.

The bigger the two strings are, the more overlapping subproblems this recursive solution has to solve redundantly.

Naturally to avoid overlapping subproblems, we use dynamic programming.

 1 public class Solution {
 2     public int longestCommonSubsequence(String A, String B) {
 3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
 4             return 0;
 5         }
 6         return lcsRecursive(A, A.length() - 1, B, B.length() - 1);
 7     }
 8     private int lcsRecursive(String s1, int endIdx1, String s2, int endIdx2){
 9         if(endIdx1 < 0 || endIdx2 < 0){
10             return 0;
11         }    
12         if(s1.charAt(endIdx1) == s2.charAt(endIdx2)){
13             return 1 + lcsRecursive(s1, endIdx1 - 1, s2, endIdx2 - 1);
14         }
15         return Math.max(lcsRecursive(s1, endIdx1, s2, endIdx2 - 1), lcsRecursive(s1, endIdx1 - 1, s2, endIdx2));
16     }
17 }

 

Solution 2. Dynamic Programming, O(n^2) runtime, O(n^2) space

lcs[i][j]: the longest common subsequence between A[0.... i - 1] and B[0....j - 1]

State function is the same with the recursive formula in solution 1.

 

 1 public class Solution {
 2     public int longestCommonSubsequence(String A, String B) {
 3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
 4             return 0;
 5         }
 6         int[][] lcs = new int[A.length() + 1][B.length() + 1];
 7         for(int i = 0; i <= A.length(); i++){
 8             lcs[i][0] = 0;
 9         }
10         for(int i = 0; i <= B.length(); i++){
11             lcs[0][i] = 0;
12         }
13         for(int i = 1; i <= A.length(); i++){
14             for(int j = 1; j <= B.length(); j++){
15                 if(A.charAt(i - 1) == B.charAt(j - 1)){
16                     lcs[i][j] = 1 + lcs[i - 1][j - 1];
17                 }
18                 else{
19                     lcs[i][j] = Math.max(lcs[i - 1][j], lcs[i][j - 1]);
20                 }
21             }
22         }
23         return lcs[A.length()][B.length()];
24     }
25 }

 

Solution 3. Dynamic Programming, with optimized O(n) space 

In solution 2, lcs[i][j] is only related to row i - 1 and i, so we can apply the rolling array techinque to 

make the O(n^2) space usage to be O(n) space usage.

 1 public class Solution {
 2     public int longestCommonSubsequence(String A, String B) {
 3         if(A == null || B == null || A.length() == 0 || B.length() == 0){
 4             return 0;
 5         }
 6         int[][] lcs = new int[2][B.length() + 1];
 7         for(int i = 0; i <= B.length(); i++){
 8             lcs[0][i] = 0;
 9         }
10         for(int i = 1; i <= A.length(); i++){
11             for(int j = 1; j <= B.length(); j++){
12                 if(A.charAt(i - 1) == B.charAt(j - 1)){
13                     lcs[i % 2][j] = 1 + lcs[(i - 1) % 2][j - 1];
14                 }
15                 else{
16                     lcs[i % 2][j] = Math.max(lcs[(i - 1) % 2][j], lcs[i % 2][j - 1]);
17                 }
18             }
19         }
20         return lcs[A.length() % 2][B.length()];
21     }
22 }

 

 Follow up question: Can you reconstruct one Longest Common Subsequence?

To do this, we must use the O(n^2) space dp solution as it keeps all the intermediate results that can be used to reconstruct one LCS.

 

 1 public ArrayList<Character> reconstructLCS(String A, String B, int[][] lcs){
 2     ArrayList<Character> result = new ArrayList<Character>();
 3     int i = lcs.length - 1;
 4     int j = lcs[0].length - 1;
 5     while(i >= 1 && j >= 1){
 6         if(A.charAt(i - 1) == B.charAt(j - 1)){
 7             result.add(A.charAt(i - 1));
 8             i--;
 9             j--;
10         }
11         else if(lcs[i - 1][j] > lcs[i][j - 1]){
12             i--;
13         }
14         else{
15             j--;
16         }
17     }
18     return result;
19 }

 

 

Related Problems

Longest Repeating Subsequence 

Edit Distance

Longest Common Substring 

 

转载于:https://www.cnblogs.com/lz87/p/7221335.html

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值