[LintCode] Number of Airplanes in the Sky

本文介绍了一种使用扫线算法解决的问题:给定飞行和降落时间的区间列表,如何计算最多有多少架飞机同时在空中。算法通过分别保存起飞和降落时间,排序后遍历并更新当前空中的飞机数量,最终返回最大数量。该问题考虑了同时起飞和降落的情况,确保算法正确处理。通过实例演示了解决步骤,并提供了关键代码实现。

Given an interval list which are flying and landing time of the flight. How many airplanes are on the sky at most?

If landing and flying happens at the same time, we consider landing should happen at first.

Example

For interval list

[
  [1,10],
  [2,3],
  [5,8],
  [4,7]
]

Return 3

 

This problem is a classical example of applying sweep-line algorithm. Typically each interval represents one event, 

the start of an interval represents the beginning of an event and the end of the interval represents the finish of the

same event. In this problem, interval's start means one airplane takes off; interval's end means the same airplane lands.

 

Algorithm: 

1. save flying times and landing time separately and sort them in ascending order.

2. Iterate through all flying times and do the following. (only flying time may give us more airplanes in the sky)

 a. If the current earliest flying time is smaller than the current earliest landing time, we know we have 1 more 

  plane flying, 0 more plane landing.  Increment current number of planes in the sky by 1 and set current fly time 

  to the next earliest time.

 b. else, we know we have 1 more plane landing, 0 more plane flying, Decrement current number of planes in the sky

  by 1 and set current land time to the next earliest time.

 c. After processing the current flying time of either case a or b, update the max number.

 

Special case to consider: What about if one plane flys and another plane lands at the same time? Does the above algorithm 

still work?

When starts[startIdx] == ends[endIdx],  the above algorithm consider it as 1 plane landing, so curr--, endIdx++; 

But startIdx is not changed and the while loop exit condition is startIdx >= n, so we'll still process this fly time in the next iteration. 

It will always be processed as the latest landing time must be the biggest number of all. So for each new fly time, case a always 

hold once. This proves the above algorithm works for this special case, it even works for cases where we have multiple planes 

fly or land at the same time.

 

 1 /**
 2  * Definition of Interval:
 3  * public classs Interval {
 4  *     int start, end;
 5  *     Interval(int start, int end) {
 6  *         this.start = start;
 7  *         this.end = end;
 8  *     }
 9  */
10 
11 class Solution {
12     /**
13      * @param intervals: An interval array
14      * @return: Count of airplanes are in the sky.
15      */
16     public int countOfAirplanes(List<Interval> airplanes) { 
17         if(airplanes == null) {
18             return 0;    
19         }    
20         if(airplanes.size() <= 1) {
21             return airplanes.size();
22         }
23         int n = airplanes.size();
24         int[] starts = new int[n];
25         int[] ends = new int[n];
26         for(int i = 0; i < n; i++){
27             starts[i] = airplanes.get(i).start;
28             ends[i] = airplanes.get(i).end;
29         }
30         Arrays.sort(starts);
31         Arrays.sort(ends);
32         int startIdx = 0, endIdx = 0, curr = 0, max = 0;
33         while(startIdx < n){
34             if(starts[startIdx] < ends[endIdx]){
35                 curr++;
36                 startIdx++;
37             }
38             else{
39                 curr--;
40                 endIdx++;
41             }
42             max = Math.max(max, curr);
43         }
44         return max;
45     }
46 }

 

 

Related Problems 

Merge Intervals

 

转载于:https://www.cnblogs.com/lz87/p/7181301.html

考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值