Filthy Rich

本文介绍了一个动态规划问题,即在一个矩形地图中从左上角走到右下角,每步可以向右、向下或右下方向移动,求取路径上能收集到的最大金额的金币数。该问题通过动态规划的方法解决,利用预填充的二维数组记录每个位置能够获得的最大金币数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

They say that in Phrygia, the streets are paved with gold. You’re currently on vacation in Phrygia, and to your astonishment you discover that this is to be taken literally: small heaps of gold are distributed throughout the city. On a certain day, the Phrygians even allow all the tourists to collect as much gold as they can in a limited rectangular area. As it happens, this day is tomorrow, and you decide to become filthy rich on this day. All the other tourists decided the same however, so it’s going to get crowded. Thus, you only have one chance to cross the field. What is the best way to do so?

Given a rectangular map and amounts of gold on every field, determine the maximum amount of gold you can collect when starting in the upper left corner of the map and moving to the adjacent field in the east, south, or south-east in each step, until you end up in the lower right corner.

Input

The input starts with a line containing a single integer, the number of test cases.
Each test case starts with a line, containing the two integers r and c, separated by a space (1 <= r, c <= 1000). This line is followed by r rows, each containing c many integers, separated by a space. These integers tell you how much gold is on each field. The amount of gold never negative.
The maximum amount of gold will always fit in an int.

Output

For each test case, write a line containing “Scenario #i:”, where i is the number of the test case, followed by a line containing the maximum amount of gold you can collect in this test case. Finish each test case with an empty line.

Sample Input

1
3 4
1 10 8 8
0 0 1 8
0 27 0 4

Sample Output

Scenario #1:
42

这道题算是动态规划,从(0,0)开始走,走到右下角,怎么可以使他收集的金子最多。我是在紫书上264页找到方法的,那里有个最长路,然后发现只要考虑他的下一行对应的那个,和右边的那个就行。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int book[1010][1010];
int main()
{
    int t,w=1;
    scanf("%d",&t);
    while(t--)
    {
        memset(book,0,sizeof(book));
        int n,m;
        scanf("%d%d",&n,&m);
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=m; j++)
            {
                scanf("%d",&book[i][j]);
                book[i][j]+=max(book[i-1][j],book[i][j-1]);
            }
        }
        printf("Scenario #%d:\n%d\n\n",w++,book[n][m]);
    }
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值