1.动态规划
状态转移方程:dp[i] = min(dp[i], dp[ i - j * j]+1),其中j是满足:j*j < i,的平方数的平方根。
其中dp[i]表示和为i的数最少由几个平方数组成
int numSquares(int n)
{
if (n <= 0)
{
return 0;
}
// cntPerfectSquares[i] = the least number of perfect square numbers
// which sum to i. Note that cntPerfectSquares[0] is 0.
vector<int> cntPerfectSquares(n + 1, INT_MAX);
cntPerfectSquares[0] = 0;
for (int i = 1; i <= n; i++)
{
// For each i, it must be the sum of some number (i - j*j) and
// a perfect square number (j*j).
for (int j = 1; j*j <= i; j++)
{
cntPerfectSquares[i] =
min(cntPerfectSquares[i], cntPerfectSquares[i - j*j] + 1);
}
}
return cntPerfectSquares.back();
}
参考:https://www.cnblogs.com/adamwong/p/10202335.html(有对状态方程的解释)
https://blog.youkuaiyun.com/zy2317878/article/details/80884347
https://leetcode.com/problems/perfect-squares/discuss/71488/Summary-of-4-different-solutions-(BFS-DP-static-DP-and-mathematics)(代码参照)
2.还有一种BFS方法没有看懂