Josephina and RPG(概率DP) ZOJ - 3735

本文解析了一个基于C(n,3)矩阵的动态规划问题,通过定义dp数组计算最大胜率。文章详细介绍了如何利用dp数组在给定的对手序列中寻找最优策略,以及如何在每轮战斗后选择是否更换角色以提高胜率。

题目

  https://cn.vjudge.net/problem/ZOJ-3735

题意

  给出一个C(n, 3)阶的矩阵,每一阶代表一种角色,MAP【i】【j】是i能够打败j的概率,然后给出m个你需要去按顺序打败的对手。你可以随意选择起始角色,并可以在打败对手后选择是否换成对手的角色,问比到最后最大的胜率。

思路

  定义dp【i】【j】数组,i代表打到第几个对手,j表示打完i后选择的人物。可以明显知道如果不进行角色替换的话,每种角色的转移是dp【i】【j】 = dp【i - 1】【j】* edge【j】【a】(a是第i个对手使用的角色)。在所有不变换角色的情况求完之后,那么变换成当前对手角色的最优情况也就是在所有不变情况中选择最好的。

#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <queue>
#include <stack>
#include <map>
#define ull unsigned long long
#define met(a, b) memset(a, b, sizeof(a))
#define lowbit(x) (x&(-x))
#define MID (l + r) / 2
#define ll long long

using namespace std;

const int maxn = 1e4 + 7;
const ll mod = 1e6 + 3;
const int inf = 0x3f3f3f3f;
const ll INF = 0x3f3f3f3f3f3f3f3f;

double edge[210][210];
double dp[maxn][210];

int main() {
    int n;
    while(cin >> n) {
        n = n*(n-1)*(n-2)/6;
        for(int i = 1; i <= n; i++) {
            for(int j = 1; j <= n; j++) {
                cin >> edge[i][j];
            }
        }
     //初始化边界
for(int i = 0; i <= n; i++) { dp[0][i] = 1; } int m; cin >> m; double mx; for(int i = 1; i <= m; i++) { int a; cin >> a; a++; mx = -1; for(int j = 1; j <= n; j++) { dp[i][j] = dp[i-1][j] * edge[j][a]; mx = max(mx, dp[i][j]); } dp[i][a] = mx; } printf("%.6lf\n", mx); } return 0; }

 

转载于:https://www.cnblogs.com/Stay-Online/p/11333052.html

基于粒子群优化算法的p-Hub选址优化(Matlab代码实现)内容概要:本文介绍了基于粒子群优化算法(PSO)的p-Hub选址优化问题的研究与实现,重点利用Matlab进行算法编程和仿真。p-Hub选址是物流与交通网络中的关键问题,旨在通过确定最优的枢纽节点位置和非枢纽节点的分配方式,最小化网络总成本。文章详细阐述了粒子群算法的基本原理及其在解决组合优化问题中的适应性改进,结合p-Hub中转网络的特点构建数学模型,并通过Matlab代码实现算法流程,包括初始化、适应度计算、粒子更新与收敛判断等环节。同时可能涉及对算法参数设置、收敛性能及不同规模案例的仿真结果分析,以验证方法的有效性和鲁棒性。; 适合人群:具备一定Matlab编程基础和优化算法理论知识的高校研究生、科研人员及从事物流网络规划、交通系统设计等相关领域的工程技术人员。; 使用场景及目标:①解决物流、航空、通信等网络中的枢纽选址与路径优化问题;②学习并掌握粒子群算法在复杂组合优化问题中的建模与实现方法;③为相关科研项目或实际工程应用提供算法支持与代码参考。; 阅读建议:建议读者结合Matlab代码逐段理解算法实现逻辑,重点关注目标函数建模、粒子编码方式及约束处理策略,并尝试调整参数或拓展模型以加深对算法性能的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值