人人网笔试

转载:http://www.52harry.com/program/qtprogram/2011-10-13/230.html

人人笔试1:一个人上台阶可以一次上1个,2个,或者3个,问这个人上n层的台阶,总共有几种走法?

import java.util.ArrayList;
public class 上楼梯 {
        
	public static void Stragy(int[] StarNumOneStep, int MaxStep){
		Stragy_(StarNumOneStep, MaxStep, new ArrayList<Integer>());
	}
	public static void Stragy_(int[] StarNumOneStep, int LeftStep, ArrayList<Integer> result){
		if(LeftStep == 0){
			Util.print(result);
		}else{
			for(Integer i : StarNumOneStep){
				if(LeftStep - i >= 0){
					result.add(i);
					Stragy_(StarNumOneStep, LeftStep-i, result);
				}
			}
		}
		if(result.size() != 0){
			result.remove(result.size() -1);
		}
	}
	public static void main(String[] args) {
		int MaxStep = 12;
		int[] StarNumOneStep = new int[]{1,2,3};
		Stragy(StarNumOneStep, MaxStep);
	}
        
}

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值