Prime Ring Problem

L - Prime Ring Problem
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

A ring is compose of n circles as shown in diagram. Put natural number 1, 2, ..., n into each circle separately, and the sum of numbers in two adjacent circles should be a prime.

Note: the number of first circle should always be 1.


 

Input

n (0 < n < 20).
 

Output

The output format is shown as sample below. Each row represents a series of circle numbers in the ring beginning from 1 clockwisely and anticlockwisely. The order of numbers must satisfy the above requirements. Print solutions in lexicographical order.

You are to write a program that completes above process.

Print a blank line after each case.
 

Sample Input

       
6 8
 

Sample Output

       
Case 1: 1 4 3 2 5 6 1 6 5 2 3 4 Case 2: 1 2 3 8 5 6 7 4 1 2 5 8 3 4 7 6 1 4 7 6 5 8 3 2 1 6 7 4 3 8 5 2
 
#include<iostream>
#include<cstring>
#include<math.h>
using namespace std;
int path[22];
bool visited[22];
int n,num=1;
bool isprime(int x){
     for(int i=2;i<=(int)sqrt(x);i++)
         if(x%i==0)
             return false;
     return true;
}
void dfs(int v,int cnt){
     if(cnt==n){        
          for(int i=0;i<n-1;i++)
             cout<<path[i]<<" ";
          cout<<path[n-1]<<endl;
     }
     if(cnt>n)
        return ;
     for(int i=2;i<=n;i++){
          if(!visited[i] && isprime(i+v) ){
              if(cnt==n-1){
                  if(!isprime(i+path[0]))
                      continue;
              }
               path[cnt]=i;
               visited[i]=true;
               dfs(i,cnt+1);
               visited[i]=false;
          }      
     }   
}
int main(){
    while(cin>>n){
          memset(visited,false,sizeof(visited));  
          path[0]=1;   
          visited[1]=true;     
          cout<<"Case "<<num++<<":"<<endl;  
          dfs(1,1);        
          cout<<endl;     
    }
//system("pause");
return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值