HDOJ Minimum Transport Cost

本文介绍了一个关于寻找最低运输成本路径的问题,通过使用Floyd算法解决该问题,并提供了详细的实现代码示例。文章强调了Floyd算法相较于Dijkstra算法在此类问题上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Minimum Transport Cost

http://acm.hdu.edu.cn/diy/contest_showproblem.php?cid=12497&pid=1008

Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other)
Total Submission(s) : 5   Accepted Submission(s) : 1
Font: Times New Roman | Verdana | Georgia
Font Size: ← →

Problem Description

These are N cities in Spring country. Between each pair of cities there may be one transportation track or none. Now there is some cargo that should be delivered from one city to another. The transportation fee consists of two parts:
The cost of the transportation on the path between these cities, and

a certain tax which will be charged whenever any cargo passing through one city, except for the source and the destination cities.

You must write a program to find the route which has the minimum cost.

Input

First is N, number of cities. N = 0 indicates the end of input.

The data of path cost, city tax, source and destination cities are given in the input, which is of the form:

a11 a12 ... a1N
a21 a22 ... a2N
...............
aN1 aN2 ... aNN
b1 b2 ... bN

c d
e f
...
g h

where aij is the transport cost from city i to city j, aij = -1 indicates there is no direct path between city i and city j. bi represents the tax of passing through city i. And the cargo is to be delivered from city c to city d, city e to city f, ..., and g = h = -1. You must output the sequence of cities passed by and the total cost which is of the form:

Output

From c to d :
Path: c-->c1-->......-->ck-->d
Total cost : ......
......

From e to f :
Path: e-->e1-->..........-->ek-->f
Total cost : ......

Note: if there are more minimal paths, output the lexically smallest one. Print a blank line after each test case.

Sample Input

5
0 3 22 -1 4
3 0 5 -1 -1
22 5 0 9 20
-1 -1 9 0 4
4 -1 20 4 0
5 17 8 3 1
1 3
3 5
2 4
-1 -1
0

Sample Output

From 1 to 3 :
Path: 1-->5-->4-->3
Total cost : 21

From 3 to 5 :
Path: 3-->4-->5
Total cost : 16

From 2 to 4 :
Path: 2-->1-->5-->4
Total cost : 17

Source

Asia 1996, Shanghai (Mainland China)
 
这个题用dijkstra 算法不好解,纠结了一上午后来还得要用ployd算法,效率低了点。
代码如下:
 

#include<iostream>
using namespace std;
const int maxnum=200;
const int maxint=9999999; 
int map[maxnum][maxnum]; //图
int tax[maxnum];//税金
int path[maxnum][maxnum]; //保存路径,用来输出
int n; //城市数量
void floyd(){
     int i,j,k,t;
         for( i=1;i<=n;i++)
             for( j=1;j<=n;j++)
                  path[i][j]=j; //从i到j第一个经过的点的为j
         for( k=1;k<=n;k++)
             for( i=1;i<=n;i++)
                  for( j=1;j<=n;j++){
                       t=map[i][k]+map[k][j]+tax[k];
                      if(t<map[i][j]){
                         map[i][j]=t;
                         path[i][j]=path[i][k];
                      }
                      else if(t==map[i][j])  //注意字典序
                           if(path[i][j]>path[i][k])
                                path[i][j]=path[i][k];               
                  }
}
int main(){
    int i,j,k;
    while(scanf("%d",&n)!=EOF && n){
          for( i=1;i<=n;i++)
               for( j=1;j<=n;j++){
                       scanf("%d",&map[i][j]);
                       if(map[i][j]==-1)
                           map[i][j]=maxint; //如果不相连就置为无穷大
                   }
          for( i=1;i<=n;i++)
              scanf("%d",&tax[i]);  //税金
          floyd();
          int s,t;   //始点和终点
          while(scanf("%d%d",&s,&t)!=EOF && s!=-1 && t!=-1){
                 printf("From %d to %d :\n",s,t);
                 printf("Path: %d",s);
                 k=s;
                 while(k!=t){
                       printf("-->%d",path[k][t]);
                       k=path[k][t];
                 }
                 printf("\nTotal cost : %d\n\n",map[s][t]);
          }
    }
     return 0;  
}
                
                
                
                  
                                        
 

 

 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值