
1、什么叫神经网络?
南搞小孩给出基本的概念: 一.一些基本常识和原理 [什么叫神经网络?] 人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。 [人工神经网络的工作原理] 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。 南搞小孩一个小程序: 关于一个神经网络模拟程序的下载 人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦 作者关于此程序的说明: 从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别! 南搞小孩神经网络研究社区: 人工神经网络论坛 (旧版,枫舞推荐) 国际神经网络学会(INNS)(英文) 欧洲神经网络学会(ENNS)(英文) 亚太神经网络学会(APNNA)(英文) 日本神经网络学会(JNNS)(日文) 国际电气工程师协会神经网络分会 研学论坛神经网络 人工智能研究者俱乐部 2nsoft人工神经网络中文站 =南搞小孩推荐部分书籍: 人工神经网络技术入门讲稿(PDF) 神经网络FAQ(英文) 数字神经网络系统(电子图书) 神经网络导论(英文) =南搞小孩还找到一份很有参考价值的讲座 <前向网络的敏感性研究> 是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存. 南搞小孩添言:很久之前,枫舞梦想智能机器人从自己手中诞生,SO在学专业的时候也有往这方面发展...考研的时候亦是朝着人工智能的方向发展..但是很不幸的是枫舞考研失败...SO 只好放弃这个美好的愿望,为生活奔波.希望你能够成为一个好的智能计算机工程师..枫舞已经努力的在给你提供条件资源哦~~
谷歌人工智能写作项目:小发猫

2、Hopfield神经网络
Hopfield神经网络(Hopfield Neural Network,简称 HNN),是美国加州理工学院物理学家Hopfield教授1982年提出的一种反馈型神经网络,信号不但能向前,还能向后传递(输出信号又反馈回来变成输入信号神经网络的符号表达。而前面所介绍的BP网络是一种前馈网络,信号只能向前传递)。他在Hopfield神经网络中引入了“能量函数”概念,使网络的运行稳定性的判断有了可靠依据。Hopfield神经网络的权值不是经过反复学习获得的,而是按照一定规则计算出来的,一经确定就不再改变,而Hopfield神经网络的状态(输入、输出信号)会在运行过程中不断更新,网络演变到稳态时各神经元的状态便是问题的解。
1985年,Hopfield和Tank研制了电子线路来模拟Hopfield网络,较好地解决了优化组合问题中著名的TSP(旅行商)问题,找到了最佳解的近似解,为神经网络的复兴建立了不可磨灭的功劳。
对于地球物理反演这种最优化问题,可以很方便地用Hopfield网络来实现。反演的目标函数等于Hopfield网络的“能量函数”,网络的状态(输入、输出信号)就是模型的参数,网络演变到稳态时各神经元的输入输出值便是反演问题的解。
Hopfield神经网络分为离散型和连续型两种网络模型,分别记为DHNN(Discrete Hopfield Neural Network)和CHNN(Continues Hopfield Neural Network)。
在前馈型网络中无论是离散的还是连续的,一般均不考虑输入与输出之间在时间上的滞后性,而只表达两者之间的映射关系。但在连续Hopfield神经网络中,考虑了输出与输入之间的延迟因素,因此需要用微分方程或差分方程来描述网络的动态数学模型。
8.5.4.1 离散Hopfield神经网络
离散Hopfield神经网络的拓扑结构如图8.12所示。这是一种单层全反馈网络,共有n个神经元。图8.12的特点是任意一个神经元的输出xi只能是0或1,均通过连接权wij反馈至所有神经元j作为它的输入xj。也就是说,每个神经元都通过连接权接收所有其他神经元输出反馈的信息,这样每一个神经元的输出都受其他所有神经元输出的控制,从而每个神经元的输出相互制约。每个神经元均设一个阀值Ti,以反映对输入噪声的控制。
图8.12 离散Hopfield神经网络的拓扑结构[8]
8.5.4.1.1 网络的状态
离散Hopfield神经网络任意一个神经元的输出xj称为网络的状态,它只能是0或1。变化规律由下式规定:
xj=f(netj) j=1,2,…,n(8.33)
f( )为转移函数,离散 Hopfield神经网络的转移函数常用符号函数表示:
地球物理反演教程
其中netj为净输入:
地球物理反演教程
对离散Hopfield神经网络,一般有
wij=0,wij=wji (8.36)
这说明神经元没有自反馈,两个神经元的相互控制权值相同。
离散Hopfield神经网络稳定时,每个神经元的状态都不再改变。此时的稳定状态就是网络的输出,记为
地球物理反演教程
8.5.4.1.2 网络的异步工作方式
它是一种串行方式,网络运行时每次只改变一个神经元的状态,其他神经元的状态保持不变。
8.5.4.1.3 网络的同步工作方式
它是一种并行同步工作方式,所有神经元同时调整状态。
8.5.4.1.4 网络的吸引子
网络达到稳定状态时的输出X,称为网络的吸引子。
8.5.4.1.5 网络的能量函数
网络的能量函数定义为
地球物理反演教程
以上是矩阵形式,考虑无自反馈的具体展开形式为
地球物理反演教程
当网络收敛到稳定状态时,有
ΔE(t)=E(t+1)-E(t)=0 (8.40)
或者说:
地球物理反演教程
理论证明了如下两个定理[8]:
定理1.对于DHNN,若按异步方式调整网络状态,且连接权矩阵W为对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。
定理2.对于DHNN,若按同步方式调整网络状态,且连接权矩阵W为非负定对称阵,则对任意初始状态,网络都能最终收敛到一个吸引子。
8.5.4.1.6 利用离散Hopfield神经网络进行反演
在地球物理线性反演中,设有如下目标函数:
地球物理反演教程
对比式(8.38)和式(8.42)发现它们在形式上有很多相似之处。王家映的《地球物理反演理论》一书中,直接用式(8.42)和式(8.38)类比,公式显得复杂。本书设立一个新的目标函数ϕ,公式将会变得简洁得多:
地球物理反演教程
再对比式(8.38)和式(8.43),发现它们完全一样,只要设:
X(t)=m,W=GTG,T=GTd (8.44)
注意:式(8.43)的目标函数ϕ的极大值解就是原来目标函数φ极小值的解,它们是同解的。
如果待反演的模型参数是离散的0或1值,那么可以直接应用离散Hopfield神经网络进行反演。但是一般它们都是连续的数值,所以还要将模型参数表示为二进制[1]:
地球物理反演教程
其中:Bij=0或1为二进制数;D和U为整数,取决于模型参数的大小和精度。这样第i个模型参数就用Bij表示为了二进制数。将式(8.45)代入目标函数式(8.43)后再与离散Hopfield神经网络的能量函数进行对比,确立新的等价关系后,就可以进行反演了。
这个新的等价关系式可以参见王家映的《地球物理反演理论》[1]一书。
反演的过程大致如下:
(1)根据模型参数的大小范围和精度确定D和U,将初始输入模型参数变为二进制数。设立一个拟合精度标准,如相对均方差ε,设定一个最大迭代次数N(所有神经元的输出都修改一次称为一次迭代)。
(2)利用数据方程的G矩阵(在一般情况下需用偏导数矩阵获得)计算网络的权值和阀值。
(3)将二进制初始模型参数输入网络并运行网络。
(4)把每次迭代网络输出值变为十进制模型参数,进行正演计算。如果拟合满足精度ε,则停止网络运行并输出反演结果。否则重复(2)~(4)步直到满足精度或达到最多迭代次数N为止。
在一般情况下,地球物理数据方程的G矩阵是无法用解析式写出的,需要用偏导数矩阵获得,它是依赖于输入参数的,因此网络的每次迭代都要重新计算偏导数矩阵。这个计算量是很大的。因此他的反演过程和最小二乘法相似。此外,用Hopfield神经网络进行反演同样有可能陷入局部极值点(吸引子)。因此同样受初始模型的影响,需要尽量让初始模型接近真实模型。
8.5.4.2 连续Hopfield神经网络(CHNN)[8]
1984年,Hopfield把离散Hopfield神经网络发展为连续Hopfield神经网络。但所有神经元都同步工作,各输入输出量为随时间变化的连续的模拟量,这就使得CHNN比DHNN在信息处理的并行性、实时性方面更接近实际的生物神经网络工作机理。因此利用CHNN进行地球物理反演更加方便。
CHNN可以用常系数微分方程来描述,但用模拟电子线路来描述,则更加形象直观,易于理解。图8.13为连续Hopfield神经网络的拓扑结构[8]。
图8.13 连续Hopfield神经网络的拓扑结构[8]
图8.13中每个神经元用一个运算放大器模拟,神经元的输入输出用放大器的输入输出电压表示,连接权用电导表示。每个放大器有一个正向输出和一个反向输出,分别表示兴奋和抑制。每个神经元还有一个用于设置激活电平的外界输入偏置电流作为阀值。
这里由于篇幅关系不再累述。感兴趣的读者可以参考其他文献。
3、什么叫神经网络?
枫舞给出基本的概念:
一.一些基本常识和原理
[什么叫神经网络?]
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
[人工神经网络的工作原理]
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================
枫舞推荐一个小程序:
关于一个神经网络模拟程序的下载
人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦
作者关于此程序的说明:
从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!
=================================================
枫舞推荐神经网络研究社区:
人工神经网络论坛
(旧版,枫舞推荐)
国际神经网络学会(INNS)(英文)
欧洲神经网络学会(ENNS)(英文)
亚太神经网络学会(APNNA)(英文)
日本神经网络学会(JNNS)(日文)
国际电气工程师协会神经网络分会
研学论坛神经网络
人工智能研究者俱乐部
2nsoft人工神经网络中文站
=================================================
枫舞推荐部分书籍:
人工神经网络技术入门讲稿(PDF)
神经网络FAQ(英文)
数字神经网络系统(电子图书)
神经网络导论(英文)
===============================================
枫舞还找到一份很有参考价值的讲座
<前向网络的敏感性研究>
是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.
=========================================================
枫舞添言:很久之前,枫舞梦想智能机器人从自己手中诞生,SO在学专业的时候也有往这方面发展...考研的时候亦是朝着人工智能的方向发展..但是很不幸的是枫舞考研失败...SO 只好放弃这个美好的愿望,为生活奔波.希望你能够成为一个好的智能计算机工程师..枫舞已经努力的在给你提供条件资源哦~~
4、神经网络是什么?
神经网络可以指向两种,一个是生物神经网络,一个是人工神经网络。
生物神经网络:一般指生物的大脑神经元,细胞,触点等组成的网络,用于产生生物的意识,帮助生物进行思考和行动。
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络:是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为“神经网络”或类神经网络。
5、神经网络是什么
神经网络是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
生物神经网络主要是指人脑的神经网络,它是人工神经网络的技术原型。人脑是人类思维的物质基础,思维的功能定位在大脑皮层,后者含有大约10^11个神经元,每个神经元又通过神经突触与大约103个其它神经元相连,形成一个高度复杂高度灵活的动态网络。作为一门学科,生物神经网络主要研究人脑神经网络的结构、功能及其工作机制,意在探索人脑思维和智能活动的规律。
人工神经网络是生物神经网络在某种简化意义下的技术复现,作为一门学科,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。
扩展资料:
神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面:
1、生物原型
从生理学、心理学、解剖学、脑科学、病理学等方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。
2、建立模型
根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。
3、算法
在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。
神经网络用到的算法就是向量乘法,并且广泛采用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特性,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。
参考资料:百度百科-神经网络(通信定义)
6、模式识别跟神经网络英文怎么说
pattern recognition
neural network
供你参考:
模式 model; module; pattern; schema
模式被输截入缩合 input-truncated condensation
模式变化 mode change
模式变换 mode conversion; mode change
模式辨认 pattern discrimination; pattern recognition
模式辨识 pattern identification
模式标本 type specimen
模式标识符 mode identifier
模式操作编辑序列 pattern operation editing sequence
模式操作符 pattern operator
模式操作数 pattern operand
模式操作字符 pattern operator
模式处理语句 pattern handling statement
模式传递函数 mode transfer function
模式串 pattern string
模式纯度 mode purity
模式存储器 mode memory
模式大气 model atmosphere
模式的解释 interpretation of scheme
模式定义 mode-definition
模式反应堆 prototype reactor
模式范畴 category; schema category
模式分隔 mode separation
模式分类 pattern classification
模式分类器 pattern classifier
模式分析 modal analysis; pattern analysis
模式符号 mode symbol
模式过敏故障 pattern sensitive fault
模式函数 mode function; pattern function
模式核对语句 pattern matching statement
模式核对运算 pattern matching operation
模式花样 mode pattern
模式化 hipping
模式化记号 hip token
模式混合器 mode mixer
模式基元 pattern primitive
模式激励器 mode exciter
模式集 set of patterns
模式简并 mode degeneracy
模式鉴别干涉仪 mode-discriminating interferometer
模式结构 mode configuration
模式解释 interpretation of scheme
模式精神病 model psychosis
模式竞争 mode competition
模式菌株 type strain
模式空间中的半平面 half plane in the pattern space
模式控制 mode control
模式理论 pattern theory
模式林 normal forest
模式令级分配 normal age-class
模式令级序列 normal series of age gradations
模式轮廓 mode envelope
模式弥散 modal dispersion
模式描述 pattern description
模式描述语言 pattern description language; schema description language
模式名 schema name
模式模拟器 mode simulator
模式母树枝 normal seed stand
模式培养 type culture
模式匹配 pattern matching
模式偏差 model deviation
模式频谱 mode spectrum
模式牵引 mode pulling
模式牵引效应 mode pulling effect
模式色散 mode dispersion
模式生长量 normal increment
模式生成 pattern generation
7、什么是人工神经网络?
一.一些基本常识和原理
[什么叫神经网络?]
人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布储在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。
人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
[人工神经网络的工作原理]
人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。
所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。
如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。
=================================================
关于一个神经网络模拟程序的下载
人工神经网络实验系统(BP网络) V1.0 Beta 作者:沈琦
作者关于此程序的说明:
从输出结果可以看到,前3条"学习"指令,使"输出"神经元收敛到了值 0.515974。而后3条"学习"指令,其收敛到了值0.520051。再看看处理4和11的指令结果 P *Out1: 0.520051看到了吗? "大脑"识别出了4和11是属于第二类的!怎么样?很神奇吧?再打show指令看看吧!"神经网络"已经形成了!你可以自己任意的设"模式"让这个"大脑"学习分辩哦!只要样本数据量充分(可含有误差的样本),如果能够在out数据上收敛地话,那它就能分辨地很准哦!有时不是绝对精确,因为它具有"模糊处理"的特性.看Process输出的值接近哪个Learning的值就是"大脑"作出的"模糊性"判别!
=================================================
人工神经网络论坛
(旧版,枫舞推荐)
国际神经网络学会(INNS)(英文)
欧洲神经网络学会(ENNS)(英文)
亚太神经网络学会(APNNA)(英文)
日本神经网络学会(JNNS)(日文)
国际电气工程师协会神经网络分会
研学论坛神经网络
人工智能研究者俱乐部
2nsoft人工神经网络中文站
=================================================
推荐部分书籍:
人工神经网络技术入门讲稿(PDF)
神经网络FAQ(英文)
数字神经网络系统(电子图书)
神经网络导论(英文)
===============================================
一份很有参考价值的讲座
<前向网络的敏感性研究>
是Powerpoint文件,比较大,如果网速不够最好用鼠标右键下载另存.
人工神经网络(ANN)模拟人脑直观性思维,通过分布式存储和并行处理实现复杂行为。Hopfield网络是一种反馈型网络,信号可前后传递,其权值固定,网络状态动态更新以达到稳定解,常用于优化问题。网络学习通过调整权值以减少错误,提高识别准确性。
1242

被折叠的 条评论
为什么被折叠?



