神经网络的起源和发展,神经网络的网络结构

本文介绍了神经网络的发展历程,从无尺度网络的特性到前向神经网络、反馈网络、自组织网络的结构。特别讨论了CNN、RNN和DNN的内部结构差异,强调了无尺度网络的鲁棒性与脆弱性。深度学习的兴起,使得神经网络的结构更加复杂,包括多层和多种类型的神经元,如卷积层和循环层,提升了模型的表达能力和处理非线性问题的能力。此外,文章还探讨了优先连接和网络成长对集散节点形成的影响,以及这对网络稳定性和抗攻击性的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述人工神经网络的结构形式

神经网络有多种分类方式,例如,按网络性能可分为连续型与离散型网络,确定型与随机型网络:按网络拓扑结构可分为前向神经网络与反馈神经网络。本章土要简介前向神经网络、反馈神经网络和自组织特征映射神经网络。

前向神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是很多神经网络模型的基础。径向基函数神经网络就是一种前向型神经网络。Hopfield神经网络是反馈网络的代表。

Hvpfi}ld网络的原型是一个非线性动力学系统,目前,已经在联想记忆和优化计算中得到成功应用。模拟退火算法是为解决优化计算中局部极小问题提出的。

Baltzmann机是具有随机输出值单元的随机神经网络,串行的Baltzmann机可以看作是对二次组合优化问题的模拟退火算法的具体实现,同时它还可以模拟外界的概率分布,实现概率意义上的联想记忆。

自组织竞争型神经网络的特点是能识别环境的特征并自动聚类。自组织竟争型神经网络已成功应用于特征抽取和大规模数据处理。

什么是无尺度网络 15

图片请参考:欢迎到论坛来讨论网络有随机网络和无尺度网络,许多网络包括因特网"人类社会和人体细胞代谢网络等,都是无尺度网络AI爱发猫 www.aifamao.com。研究无尺度网络,对于防备黑客攻击、防治流行病和开发新药等,都具有重要的意义。

一个实例:如图所示,因特网是一个无尺度网络,其中某些站点似乎与无数的其他站点相连结(参见右图的星爆形结构细节)。本图绘制于2003年2月6日,描绘了从某一测试站点到其他约10万个站点的最短连结路径。

图中以相同的颜色来表示相类似的站点。大脑,是由轴突相连结的神经细胞网络,而细胞本身,又是由生化反应相连结的分子网络。社会也是一个网络,它由友情、家庭和职业关系彼此连结。

在更大的尺度上,食物链和生态系统可以看作由物种所构成的网络。科技领域的网络更是随处可见:因特网、电力网和运输系统都是实例。

就连在文章中我们用以向你传递思想的语言,也是一种藉由语法相互串连在一起的文字网络。尽管网络是如此重要和普遍,但科学家对它的结构和属性却知之不多。

在复杂的基因网络中,故障节点是如何相互作用而引发癌症的?在特定的社会和通信系统中,疾病和电脑病毒如何快速传播而导致流行?某些网络即便大部分节点失效,还能维持运行,原因何在?最近的研究开始找到这些问题的答案。

过去的几年中,不同领域的研究者发现,很多网络都是由少数一些具有众多连结的节点所支配的,包括万维网、细胞代谢系统,以及好莱坞的演员网络在内。

包含这种重要节点(或称集散节点)的网络,我们通常称之为"无尺度"(scalefree)网络。在无尺度网络中,有些集散节点甚至具有数不清的连结,而且不存在代表性的节点。

这种网络还具有可预期的行为特性:例如对意外故障具有惊人的承受力,但面对协同式攻击时则很脆弱。这些发现极大地改变了我们对复杂外部世界的认识。

集散节点的存在,让我们认识到了以前的网络理论尚未涉及的问题:各种复杂系统具有相同的严格结构,都受制于某些基本的法则,这些法则似乎可同等地适用于细胞、计算机、语言和社会。

更进一步,认识这些法则,会帮助我们解决一系列重要问题,包括开发更好的药物、防止黑客侵人互联网、阻止致命流行病的传播,等等。

概述/无尺度网络的特性很多复杂系统拥有共同的重要特性:大部分节点只有少数几个连结,而某些节点却拥有与其他节点的大量连结。

这些具有大量连结的节点称为“集散节点”,所拥有的连结可能高达数百、数千甚至数百万。由此看来,这一特性似乎能说明网络是无尺度的。无尺度网络具有某些重要特性。

例如它们都可以承受意外的故障,但面对协同式攻击却很脆弱。了解这些特性,可能导致许多领域出现新的应用。例如,电脑科学家可能据此设计出更有效的策略,以保护因特网免受电脑病毒的侵害。

无尺度网络在过去40多年里,科学家惯于将所有复杂网络看作是随机网络。这一思想源于两位匈牙利数学家的研究,他们是卓越的Erdos以及他的密切合作者Renyi。

1959年,为了描述通信和生命科学中的网络,Erdos和Renyi提出,通过在网络节点间随机地布置连结,就可以有效地模拟出这类系统。

这种方法及相关定理的简明扼要,导致了图论的复兴,数学界也因此出现了研究随机网络的新领域。

随机网络理论有一项重要预测:尽管连结是随机安置的,但由此形成的网络却是高度民主的,也就是说,绝大部分节点的连结数目会大致相同。实际上,随机网络中节点的分布方式将遵循钟形的泊松分布。

连接数目比平均数高许多或低许多的节点,都十分罕见。有时随机网络也称作指数网络,因为一个节点连接k个其他节点的概率,会随着k值的增大而呈指数递减。

因此当1998年,我们与美国圣母大学的郑夏雄及Albert合作,开展一个描绘万维网的项目时,我们满以为会发现一个随机网络。

原因如下:人们会根据自己的兴趣,来决定将网络文件连结到哪些网站,而个人兴趣是多种多样的,可选择的网页数量也极其庞大,因而最终的连结模式将呈现出相当随机的结果。然而,实测结果却推翻了这个预测。

在这个项目中,我们设计了一个软件,可从一个网页跳转到另一个,尽可能地收集网上的所有连结。虽然这个虚拟机器人仅仅探索了整个万维网的极小一部分,但它组合出来的图景。

却揭示了令人惊异的事实:基本上,万维网是由少数高连结性的页面串连起来的,80%以上页面的连结数不到4个。

然而只占节点总数不到万分之一的极少数节点,却有1000个以上的连结(一项后续的网络调查显示,有一份文件已经被超过200万的其他网页所连结!)。

我们在计算恰好拥有k个连结的万维网页面的数目时,发现网页的连结分布遵循所谓的"幂次定律":任何节点与其他k个节点相连结的概率,与l/k成正比。

对于流入的连结而言,n值接近于2,这也就是说,流入连接数只有某站点一半的站点,在网中的数量却有该站点的4倍之多。幂次定律和表征随机网络的钟形分布大相径庭。

具体来说,幂次定律不像钟形曲线那样具有一个峰值,而是由连续递减的函数来描述。如果用双对数坐标系来描述幂次定律,得到的是一条直线[见下图随机网络vs无尺度网络]。

与随机网络中连结的民主分布不同,幂次定律所描述的,是由少数集散节点(如Yahoo和Google)所主控的系统。随机网络中绝对不可能出现集散节点。

当我们开始描绘万维网时,原本预期节点会像人类的身高一样遵循钟形分布

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值