人工智能的原理是什么
人工智能的原理,简单的形容就是:人工智能=数学计算。机器的智能程度,取决于“算法”。最初,人们发现用电路的开和关,可以表示1和0。
那么很多个电路组织在一起,不同的排列变化,就可以表示很多的事情,比如颜色、形状、字母。再加上逻辑元件(三极管),就形成了“输入(按开关按钮)——计算(电流通过线路)——输出(灯亮了)”这种模式。
想象家里的双控开关。为了实现更复杂的计算,最终变成了,“大规模集成电路”——芯片。电路逻辑层层嵌套,层层封装之后,我们改变电流状态的方法,就变成了“编写程序语言”。程序员就是干这个的。
程序员让电脑怎么执行,它就怎么执行,整个流程都是被程序固定死的。所以,要让电脑执行某项任务,程序员必须首先完全弄清楚任务的流程。就拿联控电梯举例:别小看这电梯,也挺“智能”呢。
考虑一下它需要做哪些判断:上下方向、是否满员、高峰时段、停止时间是否足够、单双楼层等等,需要提前想好所有的可能性,否则就要出bug。某种程度上说,是程序员控制了这个世界。
可总是这样事必躬亲,程序员太累了,你看他们加班都熬红了眼睛。于是就想:能不能让电脑自己学习,遇到问题自己解决呢?而我们只需要告诉它一套学习方法。
大家还记得1997年的时候,IBM用专门设计的计算机,下赢了国际象棋冠军。
其实,它的办法很笨——暴力计算,术语叫“穷举”(实际上,为了节省算力,IBM人工替它修剪去了很多不必要的计算,比如那些明显的蠢棋,并针对卡斯帕罗夫的风格做了优化)。
计算机把每一步棋的每一种下法全部算清楚,然后对比人类的比赛棋谱,找出最优解。一句话:大力出奇迹!但是到了围棋这里,没法再这样穷举了。力量再大,终有极限。
围棋的可能性走法,远超宇宙中全部原子之和(已知),即使用目前最牛逼的超算,也要算几万年。在量子计算机成熟之前,电子计算机几无可能。
所以,程序员给阿尔法狗多加了一层算法:A、先计算:哪里需要计算,哪里需要忽略。B、然后,有针对性地计算。——本质上,还是计算。哪有什么“感知”!在A步,它该如何判断“哪里需要计算”呢?
这就是“人工智能”的核心问题了:“学习”的过程。仔细

本文探讨了人工智能的原理,指出其依赖于数学计算和算法。重点介绍了卷积神经网络(CNN)在图像识别中的应用,以及神经网络学习过程中的特征提取和数据需求。同时,提到了循环神经网络(RNN)在自然语言处理中的作用。文章讨论了计算机智能的局限性和深度学习的挑战,包括过拟合问题,强调了数据和计算力对AI发展的重要性。
最低0.47元/天 解锁文章
1380

被折叠的 条评论
为什么被折叠?



