神经网络优缺点,
优点:(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。(3)具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
缺点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。
(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)理论和学习算法还有待于进一步完善和提高。
扩展资料:神经网络发展趋势人工神经网络特有的非线性适应性信息处理能力,克服了传统人工智能方法对于直觉,如模式、语音识别、非结构化信息处理方面的缺陷,使之在神经专家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
人工神经网络与其它传统方法相结合,将推动人工智能和信息处理技术不断发展。
近年来,人工神经网络正向模拟人类认知的道路上更加深入发展,与模糊系统、遗传算法、进化机制等结合,形成计算智能,成为人工智能的一个重要方向,将在实际应用中得到发展。
将信息几何应用于人工神经网络的研究,为人工神经网络的理论研究开辟了新的途径。神经计算机的研究发展很快,已有产品进入市场。光电结合的神经计算机为人工神经网络的发展提供了良好条件。
神经网络在很多领域已得到了很好的应用,但其需要研究的方面还很多。
其中,具有分布存储、并行处理、自学习、自组织以及非线性映射等优点的神经网络与其他技术的结合以及由此而来的混合方法和混合系统,已经成为一大研究热点。
由于其他方法也有它们各自的优点,所以将神经网络与其他方法相结合,取长补短,继而可以获得更好的应用效果。
目前这方面工作有神经网络与模糊逻辑、专家系统、遗传算法、小波分析、混沌、粗集理论、分形理论、证据理论和灰色系统等的融合。参考资料:百度百科-人工神经网络。
谷歌人工智能写作项目:神经网络伪原创

人工神经网络的特点有哪些
人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能好文案。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。
人工神经网络突出的优点:(1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。
希望我的回答可以帮到您哦。
人脑神经网络的优点
1、可处理噪声:一个人工神经网络补训练完成后,即使输入的数据中有部分遗失,它仍然有能力辨认样本。2、不易损坏:因为人工神经网络以分布式的方法来表示数据,所以当某些单元损坏时,它依然可以正常地工作。
3、可以平行处理。4、可以学习新的观念。以上就是人脑神经网络的优点。
人工神经网络有什么特点?
人工神经网络突出的优点(1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。
人脑神经网络的优点
它们能够胜过几乎所有其他机器学习算法。神经网络的主要优点在于它们能够胜过几乎所有其他机器学习算法,具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中。
人脑神经网络是一种模拟人脑的神经网络以期能够实现类人工智能的机器学习技术,人脑中的神经网络是一个非常复杂的组织,成人的大脑中估计有1000亿个神经元之多。
人工神经网络评价法
人工神经元是人工神经网络的基本处理单元,而人工智能的一个重要组成部分又是人工神经网络。人工神经网络是模拟生物神经元系统的数学模型,接受信息主要是通过神经元来进行的。
首先,人工神经元利用连接强度将产生的信号扩大;然后,接收到所有与之相连的神经元输出的加权累积;最后,将神经元与加权总和一一比较,当比阈值大时,则激活人工神经元,信号被输送至与它连接的上一层的神经元,反之则不行。
人工神经网络的一个重要模型就是反向传播模型(Back-Propagation Model)(简称BP模型)。
对于一个拥有n个输入节点、m个输出节点的反向传播网络,可将输入到输出的关系看作n维空间到m维空间的映射。由于网络中含有大量非线性节点,所以可具有高度非线性。
(一)神经网络评价法的步骤利用神经网络对复垦潜力进行评价的目的就是对某个指标的输入产生一个预期的评价结果,在此过程中需要对网络的连接弧权值进行不断的调整。(1)初始化所有连接弧的权值。
为了保证网络不会出现饱和及反常的情况,一般将其设置为较小的随机数。(2)在网络中输入一组训练数据,并对网络的输出值进行计算。
(3)对期望值与输出值之间的偏差进行计算,再从输出层逆向计算到第一隐含层,调整各条弧的权值,使其往减少该偏差的方向发展。
(4)重复以上几个步骤,对训练集中的各组训练数据反复计算,直至二者的偏差达到能够被认可的程度为止。(二)人工神经网络模型的建立(1)确定输入层个数。
根据评价对象的实际情况,输入层的个数就是所选择的评价指标数。(2)确定隐含层数。
通常最为理想的神经网络只具有一个隐含层,输入的信号能够被隐含节点分离,然后组合成新的向量,其运算快速,可让复杂的事物简单化,减少不必要的麻烦。(3)确定隐含层节点数。
按照经验公式:灾害损毁土地复垦式中:j——隐含层的个数;n——输入层的个数;m——输出层的个数。人工神经网络模型结构如图5-2。
图5-2人工神经网络结构图(据周丽晖,2004)(三)人工神经网络的计算输入被评价对象的指标信息(X1,X2,X3,…,Xn),计算实际输出值Yj。
灾害损毁土地复垦比较已知输出与计算输出,修改K层节点的权值和阈值。灾害损毁土地复垦式中:wij——K-1层结点j的连接权值和阈值;η——系数(0<η<1);Xi——结点i的输出。
输出结果:Cj=yj(1-yj)(dj-yj) (5-21)式中:yj——结点j的实际输出值;dj——结点j的期望输出值。
因为无法对隐含结点的输出进行比较,可推算出:灾害损毁土地复垦式中:Xj——结点j的实际输出值。
它是一个轮番代替的过程,每次的迭代都将W值调整,这样经过反复更替,直到计算输出值与期望输出值的偏差在允许值范围内才能停止。
利用人工神经网络法对复垦潜力进行评价,实际上就是将土地复垦影响评价因子与复垦潜力之间的映射关系建立起来。
只要选择的网络结构合适,利用人工神经网络函数的逼近性,就能无限接近上述映射关系,所以采用人工神经网络法进行灾毁土地复垦潜力评价是适宜的。
(四)人工神经网络方法的优缺点人工神经网络方法与其他方法相比具有如下优点:(1)它是利用最优训练原则进行重复计算,不停地调试神经网络结构,直至得到一个相对稳定的结果。
所以,采取此方法进行复垦潜力评价可以消除很多人为主观因素,保证了复垦潜力评价结果的真实性和客观性。(2)得到的评价结果误差相对较小,通过反复迭代减少系统误差,可满足任何精度要求。
(3)动态性好,通过增加参比样本的数量和随着时间不断推移,能够实现动态追踪比较和更深层次的学习。
(4)它以非线性函数为基础,与复杂的非线性动态经济系统更贴近,能够更加真实、更为准确地反映出灾毁土地复垦潜力,比传统评价方法更适用。
但是人工神经网络也存在一定的不足:(1)人工神经网络算法是采取最优化算法,通过迭代计算对连接各神经元之间的权值不断地调整,直到达到全局最优化。
但误差曲面相当复杂,在计算过程中一不小心就会使神经网络陷入局部最小点。
(2)误差通过输出层逆向传播,隐含层越多,逆向传播偏差在接近输入层时就越不准确,评价效率在一定程度上也受到影响,收敛速度不及时的情况就容易出现,从而造成个别区域的复垦潜力评价结果出现偏离。
人工神经网络的发展
现代意义上对神经网络(特指人工神经网络)的研究一般认为从1943年美国芝加哥大学的生理学家W.S. McCulloch和W.A. Pitts提出M-P神经元模型开始,到今年正好六十年。
在这六十年中,神经网络的发展走过了一段曲折的道路。
1965年M. Minsky和S. Papert在《感知机》一书中指出感知机的缺陷并表示出对这方面研究的悲观态度,使得神经网络的研究从兴起期进入了停滞期,这是神经网络发展史上的第一个转折。
到了20世纪80年代初,J.J. Hopfield的工作和D. Rumelhart等人的PDP报告显示出神经网络的巨大潜力,使得该领域的研究从停滞期进入了繁荣期,这是神经网络发展史上的第二个转折。
到了20世纪90年代中后期,随着研究者们对神经网络的局限有了更清楚的认识,以及支持向量机等似乎更有前途的方法的出现,“神经网络”这个词不再象前些年那么“火爆”了。
很多人认为神经网络的研究又开始陷入了低潮,并认为支持向量机将取代神经网络。
有趣的是,著名学者C.-J. Lin于2003年1月在德国马克斯·普朗克研究所所做的报告中说,支持向量机虽然是一个非常热门的话题,但目前最主流的分类工具仍然是决策树和神经网络。
由著名的支持向量机研究者说出这番话,显然有一种特殊的意味。事实上,目前神经网络的境遇与1965年之后真正的低潮期相比有明显的不同。
在1965年之后的很长一段时期里,美国和前苏联没有资助任何一项神经网络的研究课题,而今天世界各国对神经网络的研究仍然有大量的经费支持;1965年之后90%以上的神经网络研究者改变了研究方向,而今天无论是国际还是国内都有一支相对稳定的研究队伍。
实际上,神经网络在1965年之后陷入低潮是因为当时该领域的研究在一定意义上遭到了否定,而今天的相对平静是因为该领域已经走向成熟,很多技术开始走进生产和生活,从而造成了原有研究空间的缩小。
在科学研究中通常有这么一个现象,当某个领域的论文大量涌现的时候,往往正是该领域很不成熟、研究空间很大的时候,而且由于这时候人们对该领域研究的局限缺乏清楚的认识,其热情往往具有很大的盲目性。
从这个意义上说,过去若干年里各领域研究者一拥而上、各种专业刊物满眼“神经网络”的风光,其实是一种畸形繁荣的景象,而对神经网络的研究现在才进入了一个比较理智、正常的发展期。
在这段时期中,通过对以往研究中存在的问题和局限进行反思,并适当借鉴相关领域的研究进展,将可望开拓新的研究空间,为该领域的进一步发展奠定基础。
神经网络 的四个基本属性是什么?
神经网络 的四个基本属性:(1)非线性:非线性是自然界的普遍特征。脑智能是一种非线性现象。人工神经元处于两种不同的激活或抑制状态,它们在数学上是非线性的。
由阈值神经元组成的网络具有更好的性能,可以提高网络的容错性和存储容量。(2)无限制性:神经网络通常由多个连接广泛的神经元组成。
一个系统的整体行为不仅取决于单个神经元的特性,而且还取决于单元之间的相互作用和互连。通过单元之间的大量连接来模拟大脑的非限制性。联想记忆是一个典型的无限制的例子。
(3)非常定性:人工神经网络具有自适应、自组织和自学习的能力。神经网络处理的信息不仅会发生变化,而且非线性动态系统本身也在发生变化。迭代过程通常用来描述动态系统的演化。
(4)非凸性:在一定条件下,系统的演化方向取决于特定的状态函数。例如,能量函数的极值对应于系统的相对稳定状态。非凸性是指函数具有多个极值,系统具有多个稳定平衡态,从而导致系统演化的多样性。
扩展资料:神经网络的特点优点:人工神经网络的特点和优越性,主要表现在三个方面:第一,具有自学习功能。
例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。
预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。第三,具有高速寻找优化解的能力。
寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。参考资料:百度百科——人工神经网络。
人工神经网络的基本特征
人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
人工神经网络具有四个基本特征:(1)非线性 非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。
具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。(2)非局限性 一个神经网络通常由多个神经元广泛连接而成。
一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。
(3)非常定性 人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。
(4)非凸性 一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。
非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。
网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。
神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。
人工神经网络是一种非程序化、适应性、大脑风格的信息处理 ,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。
它是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。
人工神经网络是并行分布式系统,采用了与传统人工智能和信息处理技术完全不同的机理,克服了传统的基于逻辑符号的人工智能在处理直觉、非结构化信息方面的缺陷,具有自适应、自组织和实时学习的特点。
BP神经网络的核心问题是什么?其优缺点有哪些?
人工神经网络,是一种旨在模仿人脑结构及其功能的信息处理系统,就是使用人工神经网络方法实现模式识别.可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,神经网络方法允许样品有较大的缺损和畸变.神经网络的类型很多,建立神经网络模型时,根据研究对象的特点,可以考虑不同的神经网络模型. 前馈型BP网络,即误差逆传播神经网络是最常用,最流行的神经网络.BP网络的输入和输出关系可以看成是一种映射关系,即每一组输入对应一组输出.BP算法是最著名的多层前向网络训练算法,尽管存在收敛速度慢,局部极值等缺点,但可通过各种改进措施来提高它的收敛速度,克服局部极值现象,而且具有简单,易行,计算量小,并行性强等特点,目前仍是多层前向网络的首选算法.多层前向BP网络的优点:网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。
这使得它特别适合于求解内部机制复杂的问题;网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;网络具有一定的推广、概括能力。
多层前向BP网络的问题:从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
难以解决应用问题的实例规模和网络规模间的矛盾。这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。
为此,有人称神经网络的结构选择为一种艺术。而网络的结构直接影响网络的逼近能力及推广性质。
因此,应用中如何选择合适的网络结构是一个重要的问题;新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。
一般情况下,训练能力差时,预测能力也差,并且一定程度上,随训练能力地提高,预测能力也提高。但这种趋势有一个极限,当达到此极限时,随训练能力的提高,预测能力反而下降,即出现所谓“过拟合”现象。
此时,网络学习了过多的样本细节,而不能反映样本内含的规律由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。
人工神经网络具有自学习、联想存储和高速优化解寻找等优点,适用于图像识别、预测和优化问题。然而,它缺乏解释能力、无法提问、依赖充足数据,且理论与学习算法仍有待完善。未来,神经网络与模糊逻辑、遗传算法等融合将带来更好的应用效果。
1133

被折叠的 条评论
为什么被折叠?



