什么叫误差的反向传播,反向传播误差怎么算的

反向传播算法是训练神经网络的常用方法,它通过前向传播计算输出,再将误差反向传播到输入层,调整权重以减小误差。在BP神经网络中,三层结构足以表达复杂函数关系,训练过程包括正向传播和误差反向传播,通过不断迭代优化权重,最终达到预期输出。误差反向传播算法存在收敛速度慢、易陷入局部最小等问题,但仍然是机器学习和深度学习领域的核心算法。
部署运行你感兴趣的模型镜像

如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(ArtificialNeuralNetwork,ANN)的最常用且最有效的算法。

其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。1.变量定义上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。

如图,先定义一些变量:表示第层的第个神经元连接到第层的第个神经元的权重;表示第层的第个神经元的偏置;表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。

谷歌人工智能写作项目:神经网络伪原创

BP神经网络(误差反传网络)

虽然每个人工神经元很简单,但是只要把多个人工神经元按一定方式连接起来就构成了一个能处理复杂信息的神经网络文案狗。采用BP算法的多层前馈网络是目前应用最广泛的神经网络,称之为BP神经网络。

它的最大功能就是能映射复杂的非线性函数关系。

对于已知的模型空间和数据空间,我们知道某个模型和他对应的数据,但是无法写出它们之间的函数关系式,但是如果有大量的一一对应的模型和数据样本集合,利用BP神经网络可以模拟(映射)它们之间的函数关系。

一个三层BP网络如图8.11所示,分为输入层、隐层、输出层。它是最常用的BP网络。理论分析证明三层网络已经能够表达任意复杂的连续函数关系了。只有在映射不连续函数时(如锯齿波)才需要两个隐层[8]。

图8.11中,X=(x1,…,xi,…,xn)T为输入向量,如加入x0=-1,可以为隐层神经元引入阀值;隐层输出向量为:Y=(y1,…,yi,…,ym)T,如加入y0=-1,可以为输出层神经元引入阀值;输出层输出向量为:O=(o1,…,oi,…,ol)T;输入层到隐层之间的权值矩阵用V表示,V=(V1,…,Vj,…,Vl)T,其中列向量Vj表示隐层第j个神经元的权值向量;隐层到输出层之间的权值矩阵用W表示,W=(W1,…,Wk,…,Wl)T,其中列向量Wk表示输出层第k个神经元的权值向量。

图8.11三层BP网络[8]BP算法的基本思想是:预先给定一一对应的输入输出样本集。学习过程由信号的正向传播与误差的反向传播两个过程组成。

正向传播时,输入样本从输入层传入,经过各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出(教师信号)不符,则转入误差的反向传播。

将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有神经元,获得各层的误差信号,用它们可以对各层的神经元的权值进行调整(关于如何修改权值参见韩立群著作[8]),循环不断地利用输入输出样本集进行权值调整,以使所有输入样本的输出误差都减小到满意的精度。

这个过程就称为网络的学习训练过程。当网络训练完毕后,它相当于映射(表达)了输入输出样本之间的函数关系。

在地球物理勘探中,正演过程可以表示为如下函数:d=f(m)(8.31)它的反函数为m=f-1(d)(8.32)如果能够获得这个反函数,那么就解决了反演问题。

一般来说,难以写出这个反函数,但是我们可以用BP神经网络来映射这个反函数m=f-1(d)。

对于地球物理反问题,如果把观测数据当作输入数据,模型参数当作输出数据,事先在模型空间随机产生大量样本进行正演计算,获得对应的观测数据样本,利用它们对BP网络进行训练,则训练好的网络就相当于是地球物理数据方程的反函数。

可以用它进行反演,输入观测数据,网络就会输出它所对应的模型。BP神经网络在能够进行反演之前需要进行学习训练。训练需要大量的样本,产生这些样本需要大量的正演计算,此外在学习训练过程也需要大量的时间。

但是BP神经网络一旦训练完毕,在反演中的计算时间可以忽略。要想使BP神经网络比较好地映射函数关系,需要有全面代表性的样本,但是由于模型空间的无限性,难以获得全面代表性的样本集合。

用这样的样本训练出来的BP网络,只能反映样本所在的较小范围数据空间和较小范围模型空间的函数关系。对于超出它们的观测数据就无法正确反演。

目前BP神经网络在一维反演有较多应用,在二维、三维反演应用较少,原因就是难以产生全面代表性的样本空间。

反向传播算法 为什么 误差 那么定义

自从40年代赫布(D.O.Hebb)提出的学习规则以来,人们相继提出了各种各样的学习算法。

其中以在1986年Rumelhart等提出的误差反向传播法,即BP(errorBackPropagation)法影响最为广泛。直到今天,BP算法仍然是自动控制上最重要、应用最多的有效算法。

是用于多层神经网络训练的著名算法,有理论依据坚实、推导过程严谨、物理概念清楚、通用性强等优点。但是,人们在使用中发现BP算法存在收敛速度缓慢、易陷入局部极小等缺点。

BP算法的基本思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。

1)正向传播:输入样本->输入层->各隐层(处理)->输出层注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)。

2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。

注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

1)初始化2)输入训练样本对,计算各层输出3)计算网络输出误差4)计算各层误差信号5)调整各层权值6)检查网络总误差是否达到精度要求满足,则训练结束;不满足,则返回步骤2。

1)易形成局部极小(属贪婪算法,局部最优)而得不到全局最优;2)训练次数多使得学习效率低下,收敛速度慢(需做大量运算);3)隐节点的选取缺乏理论支持;4)训练时学习新样本有遗忘旧样本趋势。

神经网络算法原理

4.2.1概述人工神经网络的研究与计算机的研究几乎是同步发展的。

1943年心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型,20世纪50年代末,Rosenblatt提出了感知器模型,1982年,Hopfiled引入了能量函数的概念提出了神经网络的一种数学模型,1986年,Rumelhart及LeCun等学者提出了多层感知器的反向传播算法等。

神经网络技术在众多研究者的努力下,理论上日趋完善,算法种类不断增加。目前,有关神经网络的理论研究成果很多,出版了不少有关基础理论的著作,并且现在仍是全球非线性科学研究的热点之一。

神经网络是一种通过模拟人的大脑神经结构去实现人脑智能活动功能的信息处理系统,它具有人脑的基本功能,但又不是人脑的真实写照。它是人脑的一种抽象、简化和模拟模型,故称之为人工神经网络(边肇祺,2000)。

人工神经元是神经网络的节点,是神经网络的最重要组成部分之一。目前,有关神经元的模型种类繁多,最常用最简单的模型是由阈值函数、Sigmoid函数构成的模型(图4-3)。

图4-3人工神经元与两种常见的输出函数神经网络学习及识别方法最初是借鉴人脑神经元的学习识别过程提出的。

输入参数好比神经元接收信号,通过一定的权值(相当于刺激神经兴奋的强度)与神经元相连,这一过程有些类似于多元线性回归,但模拟的非线性特征是通过下一步骤体现的,即通过设定一阈值(神经元兴奋极限)来确定神经元的兴奋模式,经输出运算得到输出结果。

经过大量样本进入网络系统学习训练之后,连接输入信号与神经元之间的权值达到稳定并可最大限度地符合已经经过训练的学习样本。

在被确认网络结构的合理性和学习效果的高精度之后,将待预测样本输入参数代入网络,达到参数预测的目的。

4.2.2反向传播算法(BP法)发展到目前为止,神经网络模型不下十几种,如前馈神经网络、感知器、Hopfiled网络、径向基函数网络、反向传播算法(BP法)等,但在储层参数反演方面,目前比较成熟比较流行的网络类型是误差反向传播神经网络(BP-ANN)。

BP网络是在前馈神经网络的基础上发展起来的,始终有一个输入层(它包含的节点对应于每个输入变量)和一个输出层(它包含的节点对应于每个输出值),以及至少有一个具有任意节点数的隐含层(又称中间层)。

在BP-ANN中,相邻层的节点通过一个任意初始权值全部相连,但同一层内各节点间互不相连。

对于BP-ANN,隐含层和输出层节点的基函数必须是连续的、单调递增的,当输入趋于正或负无穷大时,它应该接近于某一固定值,也就是说,基函数为“S”型(Kosko,1992)。

BP-ANN的训练是一个监督学习过程,涉及两个数据集,即训练数据集和监督数据集。

给网络的输入层提供一组输入信息,使其通过网络而在输出层上产生逼近期望输出的过程,称之为网络的学习,或称对网络进行训练,实现这一步骤的方法则称为学习算法。

BP网络的学习过程包括两个阶段:第一个阶段是正向过程,将输入变量通过输入层经隐层逐层计算各单元的输出值;第二阶段是反向传播过程,由输出误差逐层向前算出隐层各单元的误差,并用此误差修正前层权值。

误差信息通过网络反向传播,遵循误差逐步降低的原则来调整权值,直到达到满意的输出为止。

网络经过学习以后,一组合适的、稳定的权值连接权被固定下来,将待预测样本作为输入层参数,网络经过向前传播便可以得到输出结果,这就是网络的预测。

反向传播算法主要步骤如下:首先选定权系数初始值,然后重复下述过程直至收敛(对各样本依次计算)。

(1)从前向后各层计算各单元Oj储层特征研究与预测(2)对输出层计算δj储层特征研究与预测(3)从后向前计算各隐层δj储层特征研究与预测(4)计算并保存各权值修正量储层特征研究与预测(5)修正权值储层特征研究与预测以上算法是对每个样本作权值修正,也可以对各个样本计算δj后求和,按总误差修正权值。

 

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值