
图神经网络是什么?
谷歌人工智能写作项目:爱发猫

用神经网络中的代码标签必须与图片标注标签一致吗
卷积神经网络是怎么使用标签信息的?
第一、softmax是多分类器,有多个输出,比如说它有四个输出,对应分到4类概率,若在4个输出中第二个输出的概率最大,则判定为第二类。然后与数据的标签信息比较。
第二、框选的目标按像素点有个区域范围,识别目标是否在框里面,就要看所识别目标与这个区域范围的重合程度。
人们识别图像是靠形状,那AI是怎么识别图像的?
德国研究团队给出一个原因,这个原因出乎意料:人类会关注图中对象的形状,深度学习计算机系统所用的算法不一样,它会研究对象的纹理。首先人类向算法展示大量图片,有的图片有猫,有的没有。
算法从图片中找到“特定模式”,然后用模式来做出判断,看看面对之前从未见过的图片应该贴怎样的标签。神经网络架构是根据人类视觉系统开发的,网络各层连接在一起,从图片中提取抽象特点。
神经网络系统通过一系列联系得出正确答案,不过整个处理过程十分神秘,人类往往只能在事实形成之后再解释这个神秘的过程。研究人员修改图片,欺骗神经网络,看看会发生什么事。
研究人员发现,即使只是小小的修改,系统也会给出完全错误的答案,当修改幅度很大时,系统甚至无法给图片贴标签。还有一些研究人员追溯网络,查看单个神经元会对图像做出怎样的反应,理解系统学到了什么。
德国图宾根大学科学家Geirhos领导的团队采用独特方法进行研究。
去年,团队发表报告称,他们用特殊噪点干扰图像,给图像降级,然后用图像训练神经网络,研究发现,如果将新图像交给系统处理,这些图像被人扭曲过(相同的扭曲),在识别扭曲图像时,系统的表现比人好。
不过如果图像扭曲的方式稍有不同,神经网络就无能为力了,即使在人眼看来图像的扭曲方式并无不同,算法也会犯错。
当你在很长的时间段内添加许多噪点,图中对象的形状基本不会受到影响;不过即使只是添加少量噪点,局部位置的架构也会快速扭曲。研究人员想出一个妙招,对人类、深度学习系统处理图片的方式进行测试。
算法将图像分成为小块,接下来,它不会将信息逐步融合,变成抽象高级特征,而是给每一小块下一个决定,比如这块包含自行车、那块包含鸟。
再接下来,算法将决定集合起来,判断图中是什么,比如有更多小块包含自行车线索,所以图中对象是自行车。算法不会考虑小块之间的空间关系。结果证明,在识别对象时系统的精准度很高。
为什么有图卷积神经网络?
本质上说,世界上所有的数据都是拓扑结构,也就是网络结构,如果能够把这些网络数据真正的收集、融合起来,这确实是实现了AI智能的第一步。
所以,如何利用深度学习处理这些复杂的拓扑数据,如何开创新的处理图数据以及知识图谱的智能算法是AI的一个重要方向。
深度学习在多个领域的成功主要归功于计算资源的快速发展(如GPU)、大量训练数据的收集,还有深度学习从欧几里得数据(如图像、文本和视频)中提取潜在表征的有效性。
但是,尽管深度学习已经在欧几里得数据中取得了很大的成功,但从非欧几里得域生成的数据已经取得更广泛的应用,它们需要有效分析。
如在电子商务领域,一个基于图的学习系统能够利用用户和产品之间的交互以实现高度精准的推荐。在化学领域,分子被建模为图,新药研发需要测定其生物活性。
在论文引用网络中,论文之间通过引用关系互相连接,需要将它们分成不同的类别。自2012年以来,深度学习在计算机视觉以及自然语言处理两个领域取得了巨大的成功。
假设有一张图,要做分类,传统方法需要手动提取一些特征,比如纹理,颜色,或者一些更高级的特征。然后再把这些特征放到像随机森林等分类器,给到一个输出标签,告诉它是哪个类别。
而深度学习是输入一张图,经过神经网络,直接输出一个标签。特征提取和分类一步到位,避免了手工提取特征或者人工规则,从原始数据中自动化地去提取特征,是一种端到端(end-to-end)的学习。
相较于传统的方法,深度学习能够学习到更高效的特征与模式。图数据的复杂性对现有机器学习算法提出了重大挑战,因为图数据是不规则的。
每张图大小不同、节点无序,一张图中的每个节点都有不同数目的邻近节点,使得一些在图像中容易计算的重要运算(如卷积)不能再直接应用于图。此外,现有机器学习算法的核心假设是实例彼此独立。
然而,图数据中的每个实例都与周围的其它实例相关,含有一些复杂的连接信息,用于捕获数据之间的依赖关系,包括引用、朋友关系和相互作用。最近,越来越多的研究开始将深度学习方法应用到图数据领域。
受到深度学习领域进展的驱动,研究人员在设计图神经网络的架构时借鉴了卷积网络、循环网络和深度自编码器的思想。为了应对图数据的复杂性,重要运算的泛化和定义在过去几年中迅速发展。
如何通过人工神经网络实现图像识别
神经网络实现图像识别的过程很复杂。但是大概过程很容易理解。我也是节选一篇图像识别技术的文章,大概说一下。图像识别技术主要是通过卷积神经网络来实现的。
这种神经网络的优势在于,它利用了“同一图像中相邻像素的强关联性和强相似度”这一原理。具体而言就是,在一张图像中的两个相邻像素,比图像中两个分开的像素更具有关联性。
但是,在一个常规的神经网络中,每个像素都被连接到了单独的神经元。这样一来,计算负担自然加重了。卷积神经网络通过削减许多不必要的连接来解决图像识别技术中的这一问题。
运用图像识别技术中的术语来说就是,卷积神经网络按照关联程度筛选不必要的连接,进而使图像识别过程在计算上更具有可操作性。
卷积神经网络有意地限制了图像识别时候的连接,让一个神经元只接受来自之前图层的小分段的输入(假设是3×3或5×5像素),避免了过重的计算负担。因此,每一个神经元只需要负责处理图像的一小部分。
大大加快了速度和准确率。
卷积神经网络在实施的过程中,实际上是分为两层,一个是卷积层,一个是汇聚层,简单理解就是卷积层将图片分散成一个一个或者3*3/5*5的小像素块,然后把这些输出值排列在图组中,用数字表示照片中各个区域的内容,数轴分别代表高度、宽度和颜色。
那么,我们就得到了每一个图块的三维数值表达。汇聚层是将这个三维(或是四维)图组的空间维度与采样函数结合起来,输出一个仅包含了图像中相对重要的部分的联合数组。
这一联合数组不仅能使卷积神经网络计算负担最小化,还能有效避免过度拟合的问题。以上大概就是使用卷积神经网络进行图像识别的过程。
具体可以关注ATYUN人工智能平台的文章:揭秘图像识别技术,机器如何利用卷积神经网络“看见”这个世界。
什么是BP神经网络?
。
BP算法的基本思想是:学习过程由信号正向传播与误差的反向回传两个部分组成;正向传播时,输入样本从输入层传入,经各隐层依次逐层处理,传向输出层,若输出层输出与期望不符,则将误差作为调整信号逐层反向回传,对神经元之间的连接权矩阵做出处理,使误差减小。
经反复学习,最终使误差减小到可接受的范围。具体步骤如下:1、从训练集中取出某一样本,把信息输入网络中。2、通过各节点间的连接情况正向逐层处理后,得到神经网络的实际输出。
3、计算网络实际输出与期望输出的误差。4、将误差逐层反向回传至之前各层,并按一定原则将误差信号加载到连接权值上,使整个神经网络的连接权值向误差减小的方向转化。
5、対训练集中每一个输入—输出样本对重复以上步骤,直到整个训练样本集的误差减小到符合要求为止。
本文探讨了神经网络在图像识别中的应用,特别是卷积神经网络(CNN)如何处理标签信息。同时,介绍了图神经网络(GNN)的概念,强调了深度学习在处理非欧几里得数据如图结构上的挑战和解决方案。内容涵盖了图数据的复杂性以及卷积和汇聚层在图像识别中的作用,还提到了反向传播(BP)神经网络的学习机制。
1万+

被折叠的 条评论
为什么被折叠?



