样例数据集
这是编造的JSON格式银行客户账号信息文档,文档schema如下:
{
“account_number”: 0,
“balance”: 16623,
“firstname”: “Bradshaw”,
“lastname”: “Mckenzie”,
“age”: 29,
“gender”: “F”,
“address”: “244 Columbus Place”,
“employer”: “Euron”,
“email”: “bradshawmckenzie@euron.com”,
“city”: “Hobucken”,
“state”: “CO”
}
这些数据可以通过www.json-generator.com网站生成
加载样例数据集
下载样例数据集链接
解压数据到指定目录,然后加载到elasticsearch集群
绝对路径:
curl -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary "@/home/cluster/apps/elasticsearch/elasticsearch-1.7.2/test/accounts.json" 相对路径: curl -XPOST 'localhost:9200/bank/account/_bulk?pretty' --data-binary "@test/accounts.json"
- 1
- 2
- 3
- 4
- 5
curl 'localhost:9200/_cat/indices?v'
结果:
health status index pri rep docs.count docs.deleted store.size pri.store.size
yellow open bank 5 1 1000 0 417.1kb 417.1kb
- 1
- 2
- 3
- 4
上面结果,说明我们成功bulk 1000个文档到bank索引中了
搜索数据API
有两种方式:一种方式是通过 REST 请求 URI ,发送搜索参数;另一种是通过REST 请求体,发送搜索参数。而请求体允许你包含更容易表达和可阅读的JSON格式。
- 通过 REST 请求 URI
curl 'localhost:9200/bank/_search?q=*&pretty'
结果:
{
"took" : 63,
"timed_out" : false,
"_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : {"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"} }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : {"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671 Bristol Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"} }, { "_index" : "bank", "_type" : "account",
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
q=*,参数告诉elasticsearch,在bank索引中匹配所有的文档
pretty,参数告诉elasticsearch,返回形式打印JSON结果
- 通过REST 请求体:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} }
}'
结果:
{
"took" : 26, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "1", "_score" : 1.0, "_source" : {"account_number":1,"balance":39225,"firstname":"Amber","lastname":"Duke","age":32,"gender":"M","address":"880 Holmes Lane","employer":"Pyrami","email":"amberduke@pyrami.com","city":"Brogan","state":"IL"} }, { "_index" : "bank", "_type" : "account", "_id" : "6", "_score" : 1.0, "_source" : {"account_number":6,"balance":5686,"firstname":"Hattie","lastname":"Bond","age":36,"gender":"M","address":"671 Bristol Street","employer":"Netagy","email":"hattiebond@netagy.com","city":"Dante","state":"TN"} }, { "_index" : "bank", "_type" : "account", "_id" : "13",
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
与第一种方式不同是在URI中替代传递q=*,使用POST方式提交,请求体包含JSON格式搜索
介绍查询语言
elasticsearch提供JSON格式领域特定语言执行查询。可参考Query DSL。
{
"query": { "match_all": {} }
}
- 1
- 2
- 3
query:告诉我们定义查询
match_all:运行简单类型查询指定索引中的所有文档
除了指定查询参数,还可以指定其他参数来影响最终的结果。
- match_all & 只返回第一个文档:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"size": 1 }' 结果: { "took" : 2, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 1000, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "4", "_score" : 1.0, "_source":{"account_number":4,"balance":27658,"firstname":"Rodriquez","lastname":"Flores","age":31,"gender":"F","address":"986 Wyckoff Avenue","employer":"Tourmania","email":"rodriquezflores@tourmania.com","city":"Eastvale","state":"HI"} } ] } }
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
如果不指定size,默认是返回10条文档信息
- match_all & 返回11到20个文档信息
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"from": 10, "size": 10 }'
- 1
- 2
- 3
- 4
- 5
- 6
from:指定文档索引从哪里开始,默认从0开始
size:从from开始,返回多个文档
这feature在实现分页查询很有用
- match_all and 根据account balance 降序排序 & 返回10个文档(默认10个)
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"sort": { "balance": { "order": "desc" } } }'
- 1
- 2
- 3
- 4
- 5
执行搜索
默认的,我们搜索返回完整的JSON文档。而source(_source字段搜索点击量)。如果我们不想返回完整的JSON文档,我们可以使用source返回指定字段。
- 返回 account_number and balance:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_all": {} },
"_source": ["account_number", "balance"] }'
- 1
- 2
- 3
- 4
- 5
这样操作有点类似于SQL SELECT FROM field lis
match 查询,可作为基本字段搜索查询
- 返回 account_number=20:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "account_number": 20 } } }'
- 1
- 2
- 3
- 4
- 返回 address=mill:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "address": "mill" } } }'
- 1
- 2
- 3
- 4
- 返回 address=mill or address=lane:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match": { "address": "mill lane" } } }'
- 1
- 2
- 3
- 4
- 返回 短语匹配 address=mill lane:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": { "match_phrase": { "address": "mill lane" } } }'
- 1
- 2
- 3
- 4
布尔值(bool)查询
- 返回 匹配address=mill & address=lane:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
must:要求所有条件都要满足(类似于&&)
- 返回 匹配address=mill or address=lane:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"should": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
should:任何一个满足就可以(类似于||)
- 返回 不匹配address=mill & address=lane:
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must_not": [ { "match": { "address": "mill" } }, { "match": { "address": "lane" } } ] } } }'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
must_not:所有条件都不能满足(类似于! (&&))
- 返回 age=40 & state!=ID
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"bool": {
"must": [ { "match": { "age": "40" } } ], "must_not": [ { "match": { "state": "ID" } } ] } } }'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
执行过滤器
文档中score(_score字段是搜索结果)。score是一个数字型的,是一种相对方法匹配查询文档结果。分数越高,搜索关键字与该文档相关性越高;越低,搜索关键字与该文档相关性越低。
在elasticsearch中所有的搜索都会触发相关性分数计算。如果我们不使用相关性分数计算,那要使用另一种查询能力,构建过滤器。
过滤器是类似于查询的概念,除了得以优化,更快的执行速度的两个主要原因:
1. 过滤器不计算得分,所以他们比执行查询的速度
2. 过滤器可缓存在内存中,允许重复搜索
为了便于理解过滤器,先介绍过滤器搜索(like match_all, match, bool, etc.),可以与其他的普通查询搜索组合一个过滤器。
range filter,允许我们通过一个范围值来过滤文档,一般用于数字或日期过滤
使用过滤器搜索返回 balances[ 20000,30000]。换句话说,balance>=20000 && balance<=30000
curl -XPOST 'localhost:9200/bank/_search?pretty' -d '
{
"query": {
"filtered": {
"query": { "match_all": {} }, "filter": { "range": { "balance": { "gte": 20000, "lte": 30000 } } } } } }' 结果: { "took" : 3, "timed_out" : false, "_shards" : { "total" : 5, "successful" : 5, "failed" : 0 }, "hits" : { "total" : 217, "max_score" : 1.0, "hits" : [ { "_index" : "bank", "_type" : "account", "_id" : "4", "_score" : 1.0, "_source":{"account_number":4,"balance":27658,"firstname":"Rodriquez","lastname":"Flores","age":31,"gender":"F","address":"986 Wyckoff Avenue","employer":"Tourmania","email":"rodriquezflores@tourmania.com","city":"Eastvale","state":"HI"} }, { "_index" : "bank", "_type" : "account", "_id" : "9", "_score" : 1.0, "_source":{"account_number":9,"balance":24776,"firstname":"Opal","lastname":"Meadows","age":39,"gender":"M","address":"963 Neptune Avenue","employer":"Cedward","email":"opalmeadows@cedward.com","city":"Olney","state":"OH"} }, { "_index" : "bank", "_type" : "account", "_id" : "11", "_score" : 1.0, "_source":{"account_number":11,"balance":20203,"firstname":"Jenkins","lastname":"Haney","age":20,"gender":"M","address":"740 Ferry Place","employer":"Qimonk","email":"jenkinshaney@qimonk.com","city":"Steinhatchee","state":"GA"} }, { "_index" : "bank", "_type" : "account", "_id" : "42", "_score" : 1.0, "_source":{"account_number":42,"balance":21137,"firstname":"Harding","lastname":"Hobbs","age":26,"gender":"F","address":"474 Ridgewood Place","employer":"Xth","email":"hardinghobbs@xth.com","city":"Heil","state":"ND"} }, { "_index" : "bank", "_type" : "account", "_id" : "54", "_score" : 1.0, "_source":{"account_number":54,"balance":23406,"firstname":"Angel","lastname":"Mann","age":22,"gender":"F","address":"229 Ferris Street","employer":"Amtas","email":"angelmann@amtas.com","city":"Calverton","state":"WA"} }, { "_index" : "bank", "_type" : "account", "_id" : "66", "_score" : 1.0, "_source":{"account_number":66,"balance":25939,"firstname":"Franks","lastname":"Salinas","age":28,"gender":"M","address":"437 Hamilton Walk","employer":"Cowtown","email":"frankssalinas@cowtown.com","city":"Chase","state":"VT"} }, { "_index" : "bank", "_type" : "account", "_id" : "92", "_score" : 1.0, "_source":{"account_number":92,"balance":26753,"firstname":"Gay","lastname":"Brewer","age":34,"gender":"M","address":"369 Ditmars Street","employer":"Savvy","email":"gaybrewer@savvy.com","city":"Moquino","state":