Best Time to Buy and Sell Stock II(JAVA)--贪心算法

本文介绍了一种计算股票买卖最大利润的算法。通过两次遍历价格数组的方式,找到所有上升趋势段并累加利润,实现了在限制条件下获取最大收益的目标。

题目内容:
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
翻译:
给出一个数组,该数组表示某只股票每天的价格
设计一个求最大收益的算法,你可以进行多次交易,但是每次只能买一支或卖一支,且手上一次最多只有一支股票。

方法一
思路:对数组进行循环,将每天的数据与后一天的对比,若后一天的收益比前一天大,则总收益=总收益+后一天收益-前一天收益

代码(java版)

public class Solution {
    public static int maxProfit(int[] prices) {
        int nlen = prices.length;
        if(nlen<2) return 0;
        int maxProfit = 0;
        for(int i = 1; i<nlen; i++){
        if(prices[i]>prices[i-1]){
                maxProfit = maxProfit + (prices[i]-prices[i-1]);
            } 
        }
        return maxProfit;
    }
}

方法二(摘自:http://m.blog.youkuaiyun.com/blog/mason_mow/27207175
思路:对于一个股票的价格走势,多次买入卖出使收益最大。目标就是找出这个股市波动曲线中一段段的上升曲线,对于每一个上升曲线,计算其收益,最后受益相加。
代码:

public static int maxProfit(int[] prices) {
        if (prices.length == 0)
            return 0;
        int i = 0;
        int profit = 0;
        int begMin = prices[0];
        for (i = 1; i < prices.length; ++i) {
            if (prices[i] < prices[i - 1]) {
                profit += prices[i - 1] - begMin;
                begMin = prices[i];
            }else if (i == prices.length-1){
                profit += prices[i] - begMin;
            }
            begMin = Math.min(begMin, prices[i]);//经验证,此句可省略
        }
        return profit;
    }
最佳的时间买卖股票III问题可以使用贪心算法来解决。该问题要求在最多进行两次交易的情况下,获取最大的利润。 贪心法的思路是通过在每一天进行买入和卖出操作来获取最大利润。我们可以定义四个变量:buy1、sell1、buy2和sell2,分别表示第一次买入、第一次卖出、第二次买入和第二次卖出的利润。 我们首先将buy1和buy2初始化为正无穷大,sell1和sell2初始化为0。然后遍历股票价格列表,更新这些变量的值。 对于每一天的股票价格,我们可以尝试更新第一次买入的价格和利润。如果当前股票价格比buy1小,我们更新buy1为当前价格。否则,我们计算当前价格与buy1的差值,如果大于sell1,则将sell1更新为该差值。 接下来,我们尝试更新第二次买入的价格和利润。如果当前股票价格减去sell1比buy2小,我们更新buy2为当前价格减去sell1。否则,我们计算当前价格减去sell1的差值,如果大于sell2,则将sell2更新为该差值。 最后,我们返回sell2作为最大利润。 下面是使用贪心算法解决最佳的时间买卖股票III问题的代码示例(假设prices是股票价格的列表): ```python def maxProfit(prices): buy1 = float('inf') buy2 = float('inf') sell1 = 0 sell2 = 0 for price in prices: buy1 = min(buy1, price) sell1 = max(sell1, price - buy1) buy2 = min(buy2, price - sell1) sell2 = max(sell2, price - buy2) return sell2 ``` 这个算法的时间复杂度是O(n),其中n是股票价格列表的长度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值