一排房子,连续填色,成本最低的问题

Q:

There are a row of houses, each house can be painted with three colors red, blue and green. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color. You have to paint the houses with minimum cost. How would you do it?

Note: Painting house-1 with red costs different from painting house-2 with red. The costs are different for each house and each color.

 

A:

If T(i) is the min up to the ith place, and T(i,j) is the min up to ith place with ith spot having the color j, then:

T(i)=min(T(i-1,B)+min(Gi,Ri), T(i-1,R)+min(Gi,Bi), T(i-1,G)+min(Bi,Ri))

which naively would result in exponential growth, but if you cache the results in an array, I believe it should be O(n).

u hv to maintain 3 minimums
cost(i,b)=min(cost(i-1,g),cost(i-1,r))+cost of painting i as b;
cost(i,g)=min(cost(i-1,b),cost(i-1,r))+cost of painting i as g;
cost(i,r)=min(cost(i-1,g),cost(i-1,b))+cost of painting i as r;

finally min(cost(N,b),cost(N,g),cost(N,r)) is the answer.

转载于:https://www.cnblogs.com/yayagamer/archive/2012/03/22/2412650.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值