SparkStearming实战:集成Spark SQL,使用SQL语句进行WordCount

本文介绍如何在Spark中集成SparkSQL,并使用SQL语句进行WordCount操作。通过配置pom.xml引入Spark核心、SparkSQL及Spark Streaming依赖,创建SparkSession并使用foreachRDD方法将RDD转换为DataFrame,创建临时视图后执行SQL查询实现WordCount。
1.需求:

集成Spark SQL,使用SQL语句进行WordCount

2.代码:
(1)pom.xml
<dependencies>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-core -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.1.0</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-sql -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.1.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.spark/spark-streaming -->
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.1.0</version>
        </dependency>
    </dependencies>
(2)MyNetwordWordCountWithSQL.scala
import org.apache.log4j.Logger
import org.apache.log4j.Level
import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds
import org.apache.spark.storage.StorageLevel
import org.apache.spark.sql.SparkSession

object MyNetwordWordCountWithSQL {

  def main(args: Array[String]): Unit = {
    System.setProperty("hadoop.home.dir", "/Users/macbook/Documents/hadoop/hadoop-2.8.4")
    Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
    Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)

    val conf = new SparkConf().setMaster("local[2]").setAppName("MyNetwordWordCountWithSQL")

    val ssc = new StreamingContext(conf,Seconds(5))

    val lines = ssc.socketTextStream("192.168.1.121",1235,StorageLevel.MEMORY_ONLY)

    val words = lines.flatMap(_.split(" "))

    //集成Spark SQL 使用SQL语句进行WordCount
    words.foreachRDD( rdd => {

      val spark = SparkSession.builder().config(rdd.sparkContext.getConf).getOrCreate()

      import spark.implicits._
      val df1 = rdd.toDF("word")

      df1.createOrReplaceTempView("words")

      spark.sql("select word , count(1) from words group by word").show()
    })

    ssc.start()
    ssc.awaitTermination()
  }

}
3.运行:

4.结果:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值