这题和 HDU 3030 很像先写出 dp 方程, 是n ^ 2 dp 用树状数组优化
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MOD = 9901;
const int N = 100007;
int sum[N];
int tmp[N];
int num[N];
int dp[N];
int qcf(int n)
{
sort(num + 1, num + 1 + n);
int ans = 1;
for(int i = 2; i <= n; i++)
if(num[i] != num[i - 1])
num[++ans] = num[i];
return ans;
}
inline int lb(int x)
{
return x & (-x);
}
int bf(int l, int r, int a)
{
while(l <= r)
{
int m = (l + r) >> 1;
if(num[m] == a)
return m;
if(num[m] > a)
r = m - 1;
else
l = m + 1;
}
return -1;
}
void add(int x, int v, int n)
{
while(x <= n)
{
sum[x] += v;
if(sum[x] < 0) //由于有-法, 可能会变成负数, 没有这句就错了, 就是这里害我WA好久, 直接用取莫的可以忽略= =
sum[x] += MOD;
if(sum[x] >= MOD)
sum[x] -= MOD;
x += lb(x);
}
}
int que(int x)
{
int ans = 0;
while(x > 0)
{
ans += sum[x];
if(ans >= MOD)
ans -= MOD;
x -= lb(x);
}
return ans;
}
int bf2(int l, int r, int a, int d) //找符合条件的最右边的值
{
int p = -1;
while(l <= r)
{
int m = (l + r) >> 1;
if(m == p)
break;
p = m;
if(num[m] - a <= d)
l = m;
else
r = m;
}
return l;
}
int bf3(int l, int r, int a, int d) //找符合条件的最左边的值
{
int p = -1;
while(l <= r)
{
int m = (l + r) >> 1;
if(m == p)
break;
p = m;
if(a - num[m] <= d)
r = m;
else
l = m;
}
return r;
}
int main()
{
// freopen("in.txt", "r", stdin);
int n, d;
while(~scanf("%d%d", &n ,&d))
{
for(int i = 1; i <= n; i++)
scanf("%d", tmp + i), num[i] = tmp[i];
int m = qcf(n);
memset(sum, 0, sizeof(sum));
dp[1] = 1;
int x = bf(1, m + 1, tmp[1]);
int y = bf2(x, m + 1, tmp[1], d);
int z = bf3(1, x + 1, tmp[1], d);
add(z, 1, m);
add(y + 1, -1, m);
for(int i = 2; i <= n; i++)
{
x = bf(1, m + 1, tmp[i]);
y = bf2(x, m + 1, tmp[i], d);
z = bf3(1, x + 1, tmp[i], d);
dp[i] = 1 + que(x);
if(dp[i] >= MOD)
dp[i] -= MOD;
add(z, dp[i], m);
add(y + 1, -dp[i], m);
}
int ans = 0;
for(int i = 1; i <= n; i++)
{
ans += dp[i] - 1;
if(ans >= MOD)
ans -= MOD;
}
printf("%d\n", ans);
}
return 0;
}