1023 Have Fun with Numbers (20 分)
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line “Yes” if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or “No” if not. Then in the next line, print the doubled number.
Sample Input:
1234567899
Sample Output:
Yes
2469135798
题目大意:给你一个20个数字以内的整数,让你判断这个数乘以2之后与原来的数相比,1-9这9个数字出现的次数是不是一样的,是则输出Yes,否则No,最后输出这个数乘以2的结果
#include <cstdio>
#include <algorithm>
using namespace std;
int main()
{
int a[21], b[21], dou[21], len=0;
char c;
while(scanf("%c",&c))
{
if (c == '\n')
break;
a[len++] = int(c-'0');
}
int tmp = 0;
for (int i=len-1; i>=0; i--)
{
b[i] = 2*a[i]+tmp;
tmp = b[i] / 10;
b[i] %= 10;
dou[i] = b[i];
}
if (tmp != 0)
printf("No\n1");
else
{
bool equ = true;
sort(a,a+len);
sort(b,b+len);
for (int i=0; i<len; i++)
{
if (a[i] != b[i])
equ = false;
}
if (equ == true)
printf("Yes\n");
else
printf("No\n");
}
for (int i=0; i<len; i++)
printf("%d",dou[i]);
return 0;
}