1021 Deepest Root (25 分)
A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on the selected root. Now you are supposed to find the root that results in a highest tree. Such a root is called the deepest root.
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤10^4
) which is the number of nodes, and hence the nodes are numbered from 1 to N. Then N−1 lines follow, each describes an edge by given the two adjacent nodes’ numbers.
Output Specification:
For each test case, print each of the deepest roots in a line. If such a root is not unique, print them in increasing order of their numbers. In case that the given graph is not a tree, print Error: K components where K is the number of connected components in the graph.
Sample Input 1:
5
1 2
1 3
1 4
2 5
Sample Output 1:
3
4
5
Sample Input 2:
5
1 3
1 4
2 5
3 4
Sample Output 2:
Error: 2 components
思路:并查集检查输入的图有没有环,如果有就输出连通分支个数,结束。若无环,两遍dfs,第一遍找出dfs最深的那个节点(可以有多个),保存这些节点,然后从中任取一个节点dfs,找出最深的那些节点保存,两次下来的结果就是最终答案
#include <cstdio>
#include <vector>
#include <set>
#define maxn 10001
using namespace std;
void Union(int a, int b);
int Findf(int a);
void dfs(int v, int deepth);
vector<int> E[maxn];
int N, root[maxn]={0}, high[maxn]={0};
bool circle = false, vis[maxn] = {0};
int main()
{
scanf("%d", &N);
for (int i=1; i<=N-1; i++)
{
int v1, v2;
scanf("%d %d",&v1, &v2);
if (Findf(v1) == Findf(v2))
circle = true;
Union(v1, v2);
E[v1].push_back(v2);
E[v2].push_back(v1);
}
if (circle == true)
{
int cnt=0;
for (int i=1; i<=N; i++)
{
if (root[i] == 0)
cnt++;
}
printf("Error: %d components", cnt);
return 0;
}
else
{
int maxhigh=0;
set<int> s;
dfs(1,1);
for (int i=1; i<=N; i++)
{
if (high[i] > maxhigh)
maxhigh = high[i];
}
for (int i=1; i<=N; i++)
{
if (high[i] == maxhigh)
s.insert(i);
high[i] = 0;
vis[i] = false;
}
set<int>::iterator it;
it = s.begin();
dfs(*it, 1);
maxhigh = 0;
for (int i=1; i<=N; i++)
{
if (high[i] > maxhigh)
maxhigh = high[i];
}
for (int i=1; i<=N; i++)
{
if (high[i] == maxhigh)
s.insert(i);
}
for (it=s.begin(); it!=s.end(); it++)
printf("%d\n",*it);
}
return 0;
}
void Union(int a, int b)
{
a = Findf(a);
b = Findf(b);
if (a != b)
root[a] = b;
}
int Findf(int a)
{
int roota = a;
while (root[roota] != 0)
roota = root[roota];
while (a != roota)
{
int tmp = root[a];
root[a] = roota;
a = tmp;
}
return roota;
}
void dfs(int v, int deepth)
{
vis[v] = true;
high[v] = deepth;
deepth++;
for (int i=0; i<E[v].size(); i++)
{
if (vis[E[v][i]] == false)
dfs(E[v][i], deepth);
}
}
本文探讨了如何在一个无环连通图中找到使得树高度最大的根节点,即所谓的最深根。通过并查集检测输入图是否含有环,并利用两次深度优先搜索算法确定最深根。第一次DFS找到所有可能的最深节点,第二次DFS从这些节点中选取一个作为根,再次确定最深节点。如果输入图不是一棵树,则输出错误信息及连通组件数量。
259

被折叠的 条评论
为什么被折叠?



