mysql acid

本文实验的测试环境:Windows 10+cmd+MySQL5.6.36+InnoDB

一、事务的基本要素(ACID)

  1、原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节。事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有发生一样。也就是说事务是一个不可分割的整体,就像化学中学过的原子,是物质构成的基本单位。

   2、一致性(Consistency):事务开始前和结束后,数据库的完整性约束没有被破坏 。比如A向B转账,不可能A扣了钱,B却没收到。其实一致性也是因为原子型的一种表现

   3、隔离性(Isolation):同一时间,只允许一个事务请求同一数据,不同的事务之间彼此没有任何干扰。比如A正在从一张银行卡中取钱,在A取钱的过程结束前,B不能向这张卡转账。串行化

   4、持久性(Durability):事务完成后,事务对数据库的所有更新将被保存到数据库,不能回滚。

 

二、事务的并发问题

  1、脏读:事务A读取了事务B更新的数据,然后B回滚操作,那么A读取到的数据是脏数据,与表中最终的实际数据不一致

  2、不可重复读:事务 A 多次读取同一数据,事务 B 在事务A多次读取的过程中,对数据作了更新并提交,导致事务A多次读取同一数据时,结果 不一致。读取结果与上次结果不一致

  3、幻读:系统管理员A将数据库中所有学生的成绩从具体分数改为ABCDE等级,但是系统管理员B就在这个时候插入了一条具体分数的记录,当系统管理员A改结束后发现还有一条记录没有改过来,就好像发生了幻觉一样,这就叫幻读。修改过来了但又被改了,导致结果和预期不一样

  小结:不可重复读的和幻读很容易混淆,不可重复读侧重于修改,幻读侧重于新增或删除。解决不可重复读的问题只需锁住满足条件的行,解决幻读需要锁表

 

三、MySQL事务隔离级别

事务隔离级别脏读不可重复读幻读
读未提交(read-uncommitted)
读已提交(read-committed)
可重复读(repeatable-read)
串行化(serializable)

mysql默认的事务隔离级别为repeatable-read

 

四、用例子说明各个隔离级别的情况

  1、读未提交:

    (1)打开一个客户端A,并设置当前事务模式为read uncommitted(未提交读),查询表account的初始值:

 

    (2)在客户端A的事务提交之前,打开另一个客户端B,更新表account:

 

 

    (3)这时,虽然客户端B的事务还没提交,但是客户端A就可以查询到B已经更新的数据:

 

    (4)一旦客户端B的事务因为某种原因回滚,所有的操作都将会被撤销,那客户端A查询到的数据其实就是脏数据:

 

     (5)在客户端A执行更新语句update account set balance = balance - 50 where id =1,lilei的balance没有变成350,居然是400,是不是很奇怪,数据不一致啊,如果你这么想就太天真 了,在应用程序中,我们会用400-50=350,并不知道其他会话回滚了,要想解决这个问题可以采用读已提交的隔离级别

 

  2、读已提交

    (1)打开一个客户端A,并设置当前事务模式为read committed(未提交读),查询表account的初始值:

 

    (2)在客户端A的事务提交之前,打开另一个客户端B,更新表account:

 

    (3)这时,客户端B的事务还没提交,客户端A不能查询到B已经更新的数据,解决了脏读问题:

 

    (4)客户端B的事务提交

    (5)客户端A执行与上一步相同的查询,结果 与上一步不一致,即产生了不可重复读的问题

 

   3、可重复读

     (1)打开一个客户端A,并设置当前事务模式为repeatable read,查询表account

    (2)在客户端A的事务提交之前,打开另一个客户端B,更新表account并提交

    (3)在客户端A执行步骤(1)的查询:

    (4)执行步骤(1),lilei的balance仍然是400与步骤(1)查询结果一致,没有出现不可重复读的 问题;接着执行update balance = balance - 50 where id = 1,balance没有变成400-50=350,lilei的balance值用的是步骤(2)中的350来算的,所以是300,数据的一致性倒是没有被破坏,这个有点神奇,也许是mysql的特色吧,做dml时可重复读数据还是按表中真实数据来

复制代码

mysql> select * from account;
+------+--------+---------+
| id   | name   | balance |
+------+--------+---------+
|    1 | lilei  |     400 |
|    2 | hanmei |   16000 |
|    3 | lucy   |    2400 |
+------+--------+---------+
3 rows in set (0.00 sec)

mysql> update account set balance = balance - 50 where id = 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

mysql> select * from account;
+------+--------+---------+
| id   | name   | balance |
+------+--------+---------+
|    1 | lilei  |     300 |
|    2 | hanmei |   16000 |
|    3 | lucy   |    2400 |
+------+--------+---------+
3 rows in set (0.00 sec)

复制代码

    (5) 在客户端A提交事务,查询表account的初始值

复制代码

mysql> commit;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from account;
+------+--------+---------+
| id | name | balance |
+------+--------+---------+
| 1 | lilei | 300 |
| 2 | hanmei | 16000 |
| 3 | lucy | 2400 |
+------+--------+---------+
3 rows in set (0.00 sec)

复制代码

    (6)在客户端B开启事务,新增一条数据,其中balance字段值为600,并提交

复制代码

mysql> start transaction;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into account values(4,'lily',600);
Query OK, 1 row affected (0.00 sec)

mysql> commit;
Query OK, 0 rows affected (0.01 sec)

复制代码

    (7) 在客户端A计算balance之和,值为300+16000+2400=18700,没有把客户端B的值算进去,客户端A提交后再计算balance之和,居然变成了19300,这是因为把客户端B的600算进去了

,站在客户的角度,客户是看不到客户端B的,它会觉得是天下掉馅饼了,多了600块,这就是幻读,站在开发者的角度,数据的 一致性并没有破坏。但是在应用程序中,我们得代码可能会把18700提交给用户了,如果你一定要避免这情况小概率状况的发生,那么就要采取下面要介绍的事务隔离级别“串行化” 

复制代码

mysql> select sum(balance) from account;
+--------------+
| sum(balance) |
+--------------+
| 18700 |
+--------------+
1 row in set (0.00 sec)

mysql> commit;
Query OK, 0 rows affected (0.00 sec)

mysql> select sum(balance) from account;
+--------------+
| sum(balance) |
+--------------+
| 19300 |
+--------------+
1 row in set (0.00 sec)

复制代码

  

  4.串行化

    (1)打开一个客户端A,并设置当前事务模式为serializable,查询表account的初始值:

复制代码

mysql> set session transaction isolation level serializable;
Query OK, 0 rows affected (0.00 sec)

mysql> start transaction;
Query OK, 0 rows affected (0.00 sec)

mysql> select * from account;
+------+--------+---------+
| id   | name   | balance |
+------+--------+---------+
|    1 | lilei  |   10000 |
|    2 | hanmei |   10000 |
|    3 | lucy   |   10000 |
|    4 | lily   |   10000 |
+------+--------+---------+
4 rows in set (0.00 sec)

复制代码

    (2)打开一个客户端B,并设置当前事务模式为serializable,插入一条记录报错,表被锁了插入失败,mysql中事务隔离级别为serializable时会锁表,因此不会出现幻读的情况,这种隔离级别并发性极低,开发中很少会用到。

复制代码

mysql> set session transaction isolation level serializable;
Query OK, 0 rows affected (0.00 sec)

mysql> start transaction;
Query OK, 0 rows affected (0.00 sec)

mysql> insert into account values(5,'tom',0);
ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

补充:

  1、SQL规范所规定的标准,不同的数据库具体的实现可能会有些差异

  2、mysql中默认事务隔离级别是可重复读时并不会锁住读取到的行

  3、事务隔离级别为读提交时,写数据只会锁住相应的行

  4、事务隔离级别为可重复读时,如果有索引(包括主键索引)的时候,以索引列为条件更新数据,会存在间隙锁间隙锁、行锁、下一键锁的问题,从而锁住一些行;如果没有索引,更新数据时会锁住整张表。

  5、事务隔离级别为串行化时,读写数据都会锁住整张表

   6、隔离级别越高,越能保证数据的完整性和一致性,但是对并发性能的影响也越大,鱼和熊掌不可兼得啊。对于多数应用程序,可以优先考虑把数据库系统的隔离级别设为Read Committed,它能够避免脏读取,而且具有较好的并发性能。尽管它会导致不可重复读、幻读这些并发问题,在可能出现这类问题的个别场合,可以由应用程序采用悲观锁或乐观锁来控制。

### MySQLACID特性的定义与作用 ACID 是数据库事务处理的四个关键特性,分别代表 **Atomicity(原子性)**、**Consistency(一致性)**、**Isolation(隔离性)** 和 **Durability(持久性)**。这些特性确保了在并发环境下事务能够正确执行,并且数据完整性得以维护。 #### 1. 原子性 (Atomicity) 原子性保证了事务中的所有操作要么全部完成,要么完全不执行。如果事务的一部分失败,则整个事务会被回滚到初始状态。这种特性通过日志记录和崩溃恢复机制实现[^1]。例如,在MySQL中,InnoDB存储引擎支持事务日志(redo log 和 undo log),以确保即使系统崩溃,未提交的事务也不会影响数据库状态。 #### 2. 一致性 (Consistency) 一致性确保事务执行前后,数据库从一个合法状态转换到另一个合法状态。这意味着任何违反约束或规则的操作都会导致事务失败并回滚。MySQL通过其存储引擎(如InnoDB)强制执行外键约束、唯一性约束等来维护数据的一致性[^3]。此外,事务的执行必须遵守数据库的预定义规则,包括约束、触发器和级联动作。 #### 3. 隔离性 (Isolation) 隔离性保证了多个事务并发执行时,每个事务都看不到其他事务未提交的数据变化。MySQL提供了多种事务隔离级别,包括读未提交(Read Uncommitted)、读已提交(Read Committed)、可重复读(Repeatable Read)和串行化(Serializable)。默认情况下,InnoDB使用可重复读隔离级别,以减少幻读现象的发生[^2]。隔离性通过锁机制和多版本并发控制(MVCC)实现。 #### 4. 持久性 (Durability) 持久性确保一旦事务成功提交,其对数据库的更改将永久保存,即使系统发生故障也不例外。MySQL通过写入重做日志(redo log)并在事务提交后刷新到磁盘来实现这一特性[^1]。这使得即使在系统崩溃后,也可以通过日志恢复数据。 ```sql -- 示例:创建一个支持事务的表 CREATE TABLE example ( id INT PRIMARY KEY, value VARCHAR(255) ) ENGINE=InnoDB; -- 开始事务 START TRANSACTION; -- 插入数据 INSERT INTO example (id, value) VALUES (1, 'test'); -- 提交事务 COMMIT; ``` 上述代码展示了如何在MySQL中使用事务。通过`START TRANSACTION`开始事务,执行一系列操作后通过`COMMIT`提交事务,或者在发生错误时通过`ROLLBACK`回滚事务。 ### 总结 MySQL通过其存储引擎(如InnoDB)实现了ACID特性,确保了事务的可靠性、一致性和持久性。这些特性对于构建高性能、高可靠性的应用程序至关重要。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值