最长回文串

本文详细介绍Manacher算法原理及其实现过程,该算法用于寻找字符串中最长的回文子串。通过对原字符串进行预处理,利用回文串的对称特性进行优化,实现O(n)时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


原文


字符。例如:

原串:abaab
新串:#a#b#a#a#b#
这样一来,原来的奇数长度回文串还是奇数长度,偶数长度的也变成以‘#’为中心奇数回文串了。
接下来就是算法的中心思想,用一个辅助数组P 记录以每个字符为中心的最长回文半径,也就是P[i]记录以Str[i]字符为中心的最长回文串半径。P[i]最小为1,此时回文串为Str[i]本身。
我们可以对上述例子写出其P 数组,如下
新串: # a # b # a # a # b #
P[] : 1 2 1 4 1 2 5 2 1 2 1
我们可以证明P[i]-1 就是以Str[i]为中心的回文串在原串当中的长度。
证明:
1、显然L=2*P[i]-1 即为新串中以Str[i]为中心最长回文串长度。

2、以Str[i]为中心的回文串一定是以#开头和结尾的,例如“#b#b#”或“#b#a#b#”所以L 减去最前或者最后的‘#’字符就是原串中长度      的二倍,即原串长度为(L-1)/2,化简的P[i]-1。得证。 依次从前往后求得P 数组就可以了,这里用到了DP(动态规划)的思想,       也就是求P[i] 的时候,前面的P[]值已经得到了,我们利用回文串的特殊性质可以进行一个大大的优化。



先把核心代码贴上:

[cpp]  view plain copy
  1. for (i = 0; i < len; i++){  
  2.          if (maxid > i){  
  3.              p[i] = min(p[2*id - i], maxid - i);  
  4.          }  
  5.          else{  
  6.               p[i] = 1;  
  7.          }  
  8.          while (newstr[i+p[i]] == newstr[i-p[i]])  
  9.                 p[i]++;  
  10.          if (p[i] + i > maxid){  
  11.              maxid = p[i] + i;  
  12.              id = i;  
  13.          }  
  14.          if (ans < p[i])  
  15.              ans = p[i];  
  16.      }  

为了防止求P[i]向两边扩展时可能数组越界,我们需要在数组最前面和最后面加一个特殊字符,令P[0]=‘$’最后位置默认为‘\0’不需要特殊处理。此外,我们用MaxId 变量记录在求i 之前的回文串中,延伸至最右端的位置,同时用id 记录取这个MaxId 的id 值。通过下面这句话,算法避免了很多没必要的重复匹配。

[cpp]  view plain copy
  1. if (maxid > i){  
  2.              p[i] = min(p[2*id - i], maxid - i);  
  3.          }  

那么这句话是怎么得来的呢,其实就是利用了回文串的对称性,如下图,


j=2*id-1 即为i 关于id 的对称点,根据对称性,P[j]的回文串也是可以对称到i 这边的,但是如果P[j]的回文串对称过来以后超过MaxId 的话,超出部分就不能对称过来了,如下图,


所以这里P[i]为的下限为两者中的较小者,p[i]=Min(p[2*id-i],MaxId-i)。算法的有效比较次数为MaxId 次,所以说这个算法的时间复杂度为O(n)。



下面就贴一个具体代码,求解最长回文字符串的代码:

[cpp]  view plain copy
  1. #include <iostream>  
  2. #include <algorithm>  
  3. #include <string>  
  4. using namespace std;  
  5. const int MAX = 100001;  
  6. int len, p[2*MAX];  
  7. char str[2*MAX], newstr[2*MAX];  
  8.   
  9. void change()  
  10. {  
  11.      int i;  
  12.      newstr[0] = '@';  
  13.      newstr[1] = '#';  
  14.      for (i = 0; i < len; i++){  
  15.          newstr[2*i + 2] = str[i];  
  16.          newstr[2*i + 3] = '#';  
  17.      }  
  18.      newstr[2*len + 2] = '\0';  
  19.      return ;  
  20. }  
  21.   
  22.   
  23. void Manacher()  
  24. {  
  25.      int i, j, id, maxid = 0, ans = 1;  
  26.      len = 2 * len + 2;  
  27.      for (i = 0; i < len; i++){  
  28.          if (maxid > i){  
  29.              p[i] = min(p[2*id - i], maxid - i);  
  30.          }  
  31.          else{  
  32.               p[i] = 1;  
  33.          }  
  34.          while (newstr[i+p[i]] == newstr[i-p[i]])  
  35.                 p[i]++;  
  36.          if (p[i] + i > maxid){  
  37.              maxid = p[i] + i;  
  38.              id = i;  
  39.          }  
  40.          if (ans < p[i])  
  41.              ans = p[i];  
  42.      }  
  43.        
  44.      for (i = id, j = 0; i < id + ans; i++){  
  45.           if (newstr[i] != '#'){  
  46.               str[j] = newstr[i];  
  47.               j++;  
  48.           }  
  49.      }  
  50.      str[id+ans] = '\0';  
  51.      cout << ans - 1 << " " << str << endl;  
  52.      return ;  
  53. }  
  54.   
  55.   
  56. int main()  
  57. {  
  58.     while (scanf("%s", &str)){  
  59.           if (strcmp(str, "END") == 0)   break;  
  60.           len = strlen(str);  
  61.           change();  
  62.           Manacher();  
  63.     }  
  64.       
  65.     system("pause");  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值