Hanlp自然语言处理工具之词法分析器

本文介绍了HanLP自然语言处理工具中的词法分析器,包括其加载模型、分析接口、在线学习、模型压缩与持久化等功能。通过PerceptronLexicalAnalyzer,可以进行中文分词、词性标注和命名实体识别,同时支持增量训练和模型压缩,以适应不断变化的语言环境和提高准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章是接前两篇《分词工具Hanlp基于感知机的中文分词框架》和《基于结构化感知机的词性标注与命名实体识别框架》的。本系统将同时进行中文分词、词性标注与命名实体识别3个任务的子系统称为“词法分析器”。

加载

对应的类为PerceptronLexicalAnalyzer,其构造方法为递增的3个模型地址:

  1. public PerceptronLexicalAnalyzer(String cwsModelFile) throws IOException
  2. public PerceptronLexicalAnalyzer(String cwsModelFile, String posModelFile) throws IOException
  3. public PerceptronLexicalAnalyzer(String cwsModelFile, String posModelFile, String nerModelFile) throws IOException

用户根据自己要进行的任务,训练3个模型中的任意个数,然后灵活传入此类构造即可。此处假设训练了3个模型,那么传入这3个模型的路径即可构造词法分析器:

public void testCWSandPOSandNER() throws Exception

{

    PerceptronLexicalAnalyzer segmenter = new PerceptronLexicalAnalyzer(Config.CWS_MODEL_FILE, Config.POS_MODEL_FILE, Config.NER_MODEL_FILE);

}

分析

词法分析器的分析接口如下:

public static final String SENTENCE = "香港特别行政区的张朝阳说商品和服务是三原县鲁桥食品厂的主营业务";

public void testCWSandPOSandNER() throws Exception

{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值