哲学家进餐问题:
五个哲学家共用一张圆桌,分别坐在周围的五张椅子上,在桌子上有五只碗和五只筷子,他们的生活方式是交替地进行思考和进餐。平时,一个哲学家进行思考,饥饿时便试图取用其左右最靠近他的筷子,只有在他拿到两只筷子时才能进餐。进餐毕,放下筷子继续思考。
分析:放在桌子上的筷子是临界资源,在一段时间内只允许一位哲学家使用,为了实现对筷子的互斥访问,可以用一个信号量表示筷子,由这五个信号量构成信号量数组。
semaphore chopstick[5] = {1,1,1,1,1};
while(true)
{
/*当哲学家饥饿时,总是先拿左边的筷子,再拿右边的筷子*/
wait(chopstick[i]);
wait(chopstick[(i+1)%5]);
// 吃饭
/*当哲学家进餐完成后,总是先放下左边的筷子,再放下右边的筷子*/
signal(chopstick[i]);
signal(chopstick[(i+1)%5]);
}
上述的代码可以保证不会有两个相邻的哲学家同时进餐,但却可能引起死锁的情况。假如五位哲学家同时饥饿而都拿起的左边的筷子,就会使五个信号量chopstick都为0,当他们试图去拿右手边的筷子时,都将无筷子而陷入无限期的等待。
避免死锁,使用以下策略:
1.至多只允许四个哲学家同时进餐,以保证至少有一个哲学家能够进餐,最终总会释放出他所使用过的两支筷子,从而可使更多的哲学家进餐。定义信号量count,只允许4个哲学家同时进餐,这样就能保证至少有一个哲学家可以就餐。
semaphore chopstick[5]={1,1,1,1,1};
semaphore count=4; // 设置一个count,最多有四个哲学家可以进来
void philosopher(int i)
{
while(true)
{
think();
wait(count); //请求进入房间进餐 当count为0时 不能允许哲学家再进来了
wait(chopstick[i]); //请求左手边的筷子
wait(chopstick[(i+1)%5]); //请求右手边的筷子
eat();
signal(chopstick[i]); //释放左手边的筷子
signal(chopstick[(i+1)%5]); //释放右手边的筷子
signal(count); //离开饭桌释放信号量
}
}
2.仅当哲学家的左右两支筷子都可用时,才允许他拿起筷子进餐。利用信号量的保护机制实现,思想是通过记录型信号量mutex对取左侧和右侧筷子的操作进行保护,使之成为一个原子操作,这样可以防止死锁的出现。
semaphore mutex = 1; // 这个过程需要判断两根筷子是否可用,并保护起来
semaphore chopstick[5]={1,1,1,1,1};
void philosopher(int i)
{
while(true)
{
/* 这个过程中可能只能由一个人在吃饭,效率低下,有五只筷子,其实是可以达到两个人同时吃饭 */
think();
wait(mutex); // 保护信号量
wait(chopstick[(i+1)%5]); // 请求右手边的筷子
wait(chopstick[i]); // 请求左手边的筷子
signal(mutex); // 释放保护信号量
eat();
signal(chopstick[(i+1)%5]); // 释放右手边的筷子
signal(chopstick[i]); // 释放左手边的筷子
}
}
操作系统哲学家进餐问题及死锁避免策略
该博客探讨了哲学家进餐问题,五个哲学家围绕一张圆桌,交替思考和用餐,需确保不会发生两个相邻哲学家同时用餐或产生死锁。提出了使用信号量策略,包括限制最多四名哲学家同时进餐以及通过信号量保护机制防止死锁的发生。
4万+

被折叠的 条评论
为什么被折叠?



