UVa 10404 Bachet's Game(DP)

本文探讨了Bachet's Game的一种变化形式,详细解释了如何通过动态规划方法确定最优策略,确保玩家能赢得比赛。游戏初始时桌面上有n颗石头,两名玩家Stan和Olive轮流移除石头,直至取走最后一颗石头者获胜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意   给你n个小石头  和一个数组a[m]   然后两个人轮流取石头  stan先取  olive后取  他们都完美发挥    谁取完最后一个石头谁就是赢家    感觉不是很容易看出来是dp题  令d[i]表示只有i个石子时谁赢   1表示stan赢  0表示olive赢   

i-a[j]表示从i个石子一次取走a[j]个还剩下的    所以有  当(i-a[j]>0&&d[i-a[j]]=0)时  d[i]=1;

#include<cstdio>  
#include<cstring>  
using namespace std;  
int d[1000005],a[12],ans,n,m;  
int main()  
{  
    while(scanf("%d",&n)!=EOF)  
    {  
        scanf("%d",&m);  
        for(int i=1;i<=m;++i)  
                scanf("%d",&a[i]);  
        memset(d,0,sizeof(d));  
        for(int i=1;i<=n;++i)  
            for(int j=1;j<=m;++j)  
            {  
                if(i-a[j]>=0&&d[i-a[j]]==0)  
                {  
                    d[i]=1;  
                    break;  
                }  
            }  
        printf(d[n]?"Stan wins\n":"Ollie wins\n");  
    }  
}  


Bachet's Game

Bachet's game is probably known to all but probably not by this name. Initially there are nstones on the table. There are two players Stan and Ollie, who move alternately. Stan always starts. The legal moves consist in removing at least one but not more than kstones from the table. The winner is the one to take the last stone.

Here we consider a variation of this game. The number of stones that can be removed in a single move must be a member of a certain set of m numbers. Among the m numbers there is always 1 and thus the game never stalls.

Input

The input consists of a number of lines. Each line describes one game by a sequence of positive numbers. The first number is n <= 1000000 the number of stones on the table; the second number is m <= 10 giving the number of numbers that follow; the last m numbers on the line specify how many stones can be removed from the table in a single move.

Input

For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly.

Sample input

20 3 1 3 8
21 3 1 3 8
22 3 1 3 8
23 3 1 3 8
1000000 10 1 23 38 11 7 5 4 8 3 13
999996 10 1 23 38 11 7 5 4 8 3 13

Output for sample input

Stan wins
Stan wins
Ollie wins
Stan wins
Stan wins
Ollie wins



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值