install gcc on your computer

本文提供了一种简单的 GCC 5.3.0 安装方法,包括配置、构建及安装步骤,并介绍了如何创建软链接以便新旧版本共存。

mainly from:   https://gcc.gnu.org/wiki/InstallingGCC  

the main steps:

for example: configuring and building gcc-5.3.0 should be as simple as

tar gcc-5.3.0

./contrib/download_prerequisities

cd ..

mkdir objdir

cd objdir

$PWD/../gcc-5.3.0/configure --prefix=/your/install/path/gcc-5.3.0 --enable-languages=c,c++,fortran,go --disable-multilib

make -j 8

make install

------------------------------------------------------------

do soft link, I have installed gcc/g++ 4.8.4

duplicate the original link, for me:   sudo mv /usr/bin/gcc /usr/bin/gcc.back.4.8.4

                                                        sudo mv /usr/bin/g++ /usr/bin/g++.back.4.8.4

build the new link, for me:  sudo ln -s  /your/install/path/gcc-5.3.0/bin/gcc  /usr/bin/gcc

                                           sudo ln -s  /your/install/path/gcc-5.3.0/bin/g++  /usr/bin/g++




rtw89 A repo for the newest Realtek rtw89 codes. This repo now contains the code for the Realtek RTW8922AE, which is a Wifi 7 device. It has been tested using a Wifi 6 AP as I do not have access to a Wifi 7 model. The driver works very well. This repo is current with rtw-next up to April 3, 2024. This branch was created from the version merged into the wireless-next repo, which is in the 5.16 kernel. IF YOU USE DRIVERS FROM THIS REPO FOR KERNELS 5.16+, YOU MUST BLACKLIST THE KERNEL VERSIONS!!!! FAILING TO DO THIS WILL RESULT IN ALL MANNER OF STRANGE ERRORS. This code will build on any kernel 6.10 and newer as long as the distro has not modified any of the kernel APIs. IF YOU RUN UBUNTU, YOU CAN BE ASSURED THAT THE APIs HAVE CHANGED. NO, I WILL NOT MODIFY THE SOURCE FOR YOU. YOU ARE ON YOUR OWN!!!!! Note that if you use this driver on kernels older than 5.15, the enhanced features of wifi 5 and wifi 6 are greatly crippled as the kernel does hot have the capability to support the new packet widths and speeds. If you use such a kernel, you might as well have an 802.11n (wifi 4) device. This repository includes drivers for the following cards: Realtek 8851BE, 8852AE, 8852BE, 8852CE, and 8922AE. If you are looking for a driver for chips such as RTL8188EE, RTL8192CE, RTL8192CU, RTL8192DE, RTL8192EE, RTL8192SE, RTL8723AE, or RTL8723BE, these should be provided by your kernel. If not, then you should go to the Backports Project (https://backports.wiki.kernel.org/index.php/Main_Page) to obtain the necessary code. If you have an RTW8822B{E,U,S}, RTW8822C{E,U,S}, RTW8723D{E,U,S}, or RTW8821C{E,U,S}, then you should use the drivers at https://github.com/lwfinger/rtw88.git. Installation instruction Requirements You will need to install "make", "gcc", "kernel headers", "kernel build essentials", and "git". For Ubuntu: You can install them with the following command sudo apt-get update sudo apt-get install make gcc linux-headers-$(uname -r) build-essential git Users of Debian, Ubuntu, and similar (Mint etc) may want to scroll down and follow the DKMS instructions at the end of this document instead. For Fedora: You can install them with the following command sudo dnf install kernel-headers kernel-devel sudo dnf group install "C Development Tools and Libraries" For openSUSE: Install necessary headers with sudo zypper install make gcc kernel-devel kernel-default-devel git libopenssl-devel For Arch: After installing the necessary kernel headers and base-devel, git clone https://aur.archlinux.org/rtw89-dkms-git.git cd rtw89-dkms-git makepkg -sri If any of the packages above are not found check if your distro installs them like that. Installation For all distros: git clone https://github.com/lwfinger/rtw89.git cd rtw89 make sudo make install Installation with module signing for SecureBoot For all distros: git clone https://github.com/lwfinger/rtw89.git cd rtw89 make sudo make sign-install You will be prompted with a password, please keep it in mind and use it in the next steps. Reboot to activate the new installed module. In the MOK management screen: Select "Enroll key" and enroll the key created by above sign-install step When prompted, enter the password you entered when create sign key. If you enter wrong password, your computer won't be bootable. In this case, use the BOOT menu from your BIOS, to boot into your OS then do below steps: sudo mokutil --reset Restart your computer Use BOOT menu from BIOS to boot into your OS In the MOK management screen, select reset MOK list Reboot then retry from the step to make sign-install How to unload/reload a Kernel module sudo modprobe -rv rtw_8852ae sudo modprobe -rv rtw89core #These two statements unload the module Due to the behavior of the modprobe utility, it takes both to unload. sudo modprobe -v rtw_8852ae #This loads the module A single modprobe call will reload the module. Uninstall drivers For all distros: sudo make uninstall Problem with recovery after sleep or hibernation Some BIOSs have trouble changing the power state from D3hot to D0. If you have this problem, then sudo cp suspend_rtw89 /usr/lib/systemd/system-sleep/. That script will unload the driver before sleep or hibernation, and reload it following resumption. Option configuration IMPORTANT: If you have an HP or Lenovo laptop, Their BIOS does not handle the PCIe interface correctly. To compensate, run the following command: sudo cp 70-rtw89.conf /etc/modprobe.d/. Then unload the drivers and reload. You should see the options appended to the end of the rtw89_pci or rtw89pci load line. If it turns out that your system needs one of the other configuration options, then do the following: sudo nano /etc/modprobe.d/<dev_name>.conf There, enter the line below: options <driver_name> <<driver_option_name>>=<value> The available options for rtw89pci are disable_clkreq, disable_aspm_l1, and disable_aspm_l1ss. The available options for rtw89core are debug_mask, and disable_ps_mode. If after rebooting the wifi still doesn't work, it might mean that it was not loaded. To fix that, you will have to manually rebuild initramfs. To do that, execute one of the two commands, depending on how old/new your system is. mkinitrd # If you're running an older system dracut -f --regenerate-all # If you're running a newer system After rebuilding initramfs, reboot your computer and check if the wifi works properly now. Normally, none of these will be needed; however, if you are getting firmware errors, one or both of the disable_aspm_* options may help. They are needed when a buggy BIOS fails to implement the PCI specs correctly. When your kernel changes, then you need to do the following: cd ~/rtw89 git pull make clean make sudo make install ;or sudo make sign-install Remember, this MUST be done whenever you get a new kernel - no exceptions. These drivers will not build for kernels older than 5.8. If you must use an older kernel, submit a GitHub issue with a listing of the build errors, but be aware that doing so will cripple your device. Without the errors, the issue will be ignored. I am not a mind reader. When you have problems where the driver builds and loads correctly, but fails to work, a GitHub issue is NOT the best place to report it. I have no idea of the internal workings of any of the chips, and the Realtek engineers who do will not read these issues. To reach them, send E-mail to linux-wireless@vger.kernel.org. Include a detailed description of any messages in the kernel logs and any steps that you have taken to analyze or fix the problem. If your description is not complete, you are unlikely to get any satisfaction. One other thing - your mail MUST be plain test. HTML mail is rejected. DKMS packaging for debian and derivatives DKMS is commonly used on debian and derivatives, like ubuntu, to streamline building extra kernel modules. By following the instructions below and installing the resulting package, the rtw89 driver will automatically rebuild on kernel updates. Secure boot signing will happen automatically as well, as long as the dkms signing key (usually located at /var/lib/dkms/mok.key) is enrolled. See your distro's secure boot documentation for more details. Prerequisites: sudo apt install dh-sequence-dkms debhelper build-essential devscripts git-build-recipe This workflow uses devscripts, which has quite a few perl dependencies. You may wish to build inside a chroot to avoid unnecessary clutter on your system. The debian wiki page for chroot has simple instructions for debian, which you can adapt to other distros as needed by changing the release codename and mirror url. If you do, make sure to install the package on your host system, as it will fail if you try to install inside the chroot. Build and installation # If you've already built as above clean up your workspace or check one out specially (otherwise some temp files can end up in your package) git clean -xfd git deborig HEAD dpkg-buildpackage -us -uc sudo apt install ../rtw89-dkms_1.0.2-3_all.deb This will install the package, and build the module for your currently active kernel. You should then be able to modprobe as above. It will also load automatically on boot. A note regarding firmware Firmware from userspace is required to use this driver. This package will attempt to pull the firmware in automatically as a Recommends. However, if your distro does not provide one of firmware-realtek >= 20230117-1 or linux-firmware >= 20220329.git681281e4-0ubuntu3.10, the driver will fail to load, and dmesg will show an error about a specific missing firmware file. In this case, you can download the firmware files directly from https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/rtw89. 将上述内容翻译成中文
09-25
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)内容概要:本文档围绕基于遗传算法的异构分布式系统任务调度算法展开研究,重点介绍了一种结合遗传算法的新颖优化方法,并通过Matlab代码实现验证其在复杂调度问题中的有效性。文中还涵盖了多种智能优化算法在生产调度、经济调度、车间调度、无人机路径规划、微电网优化等领域的应用案例,展示了从理论建模到仿真实现的完整流程。此外,文档系统梳理了智能优化、机器学习、路径规划、电力系统管理等多个科研方向的技术体系与实际应用场景,强调“借力”工具与创新思维在科研中的重要性。; 适合人群:具备一定Matlab编程基础,从事智能优化、自动化、电力系统、控制工程等相关领域研究的研究生及科研人员,尤其适合正在开展调度优化、路径规划或算法改进类课题的研究者; 使用场景及目标:①学习遗传算法及其他智能优化算法(如粒子群、蜣螂优化、NSGA等)在任务调度中的设计与实现;②掌握Matlab/Simulink在科研仿真中的综合应用;③获取多领域(如微电网、无人机、车间调度)的算法复现与创新思路; 阅读建议:建议按目录顺序系统浏览,重点关注算法原理与代码实现的对应关系,结合提供的网盘资源下载完整代码进行调试与复现,同时注重从已有案例中提炼可迁移的科研方法与创新路径。
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文提出了一种基于非支配排序的蜣螂优化算法(NSDBO),用于求解微电网多目标优化调度问题。该方法结合非支配排序机制,提升了传统蜣螂优化算法在处理多目标问题时的收敛性和分布性,有效解决了微电网调度中经济成本、碳排放、能源利用率等多个相互冲突目标的优化难题。研究构建了包含风、光、储能等多种分布式能源的微电网模型,并通过Matlab代码实现算法仿真,验证了NSDBO在寻找帕累托最优解集方面的优越性能,相较于其他多目标优化算法表现出更强的搜索能力和稳定性。; 适合人群:具备一定电力系统或优化算法基础,从事新能源、微电网、智能优化等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于微电网能量管理系统的多目标优化调度设计;②作为新型智能优化算法的研究与改进基础,用于解决复杂的多目标工程优化问题;③帮助理解非支配排序机制在进化算法中的集成方法及其在实际系统中的仿真实现。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注非支配排序、拥挤度计算和蜣螂行为模拟的结合方式,并可通过替换目标函数或系统参数进行扩展实验,以掌握算法的适应性与调参技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值